期刊文献+

仿射非线性系统状态方程的任意阶近似级数解

Any Order Approximate Series Solution of the State Equation for Affine Nonlinear Systems
下载PDF
导出
摘要 对于仿射非线性系统状态方程,对其右端进行Taylor展开,使之成为状态变量的无穷级数形式。利用微分方程理论,求得该方程的级数形式的任意阶近似解析解。 By making of the Taylor expansion, the state equation of affine nonlinear systems is converted to a set of equations for state variation with infinite series expression. Based on the theory of differential equation, any order approximate solution with series expression for the state equation of affine nonlinear systems is obtained.
作者 曹少中
出处 《北京印刷学院学报》 2008年第6期70-73,共4页 Journal of Beijing Institute of Graphic Communication
基金 国家自然基金项目(60673101) 国家高技术研究发展计划(863计划)(2006AA04Z110) 北京市教委科技面上项目(KM200810015003) 北京市高校人才强教计划(TXM2007014223044661) 北京印刷学院引进人才项目(09170107019)
关键词 仿射非线性系统 状态方程 TAYLOR展开 任意阶近似级数解 affine nonlinear systems state equation Taylor expansion any order approximate series solution
  • 相关文献

参考文献3

二级参考文献17

  • 1王俊,奚宏生,季海波,康宇.基于梯度算法的随机非线性系统鲁棒自适应控制[J].中国科学技术大学学报,2004,34(4):495-503. 被引量:2
  • 2黄玉林,张维海.约束随机线性二次最优控制的研究[J].自动化学报,2006,32(2):246-254. 被引量:7
  • 3Alberto Isidori. Nonlinear control systems[M]. 3rd ed. London : Springer-Verlag, 1995.
  • 4Liberzon D, Mores A S. Basic problems on stability and design of switched systems[J]. IEEE Control ,Systems Magazine, 1999, 34(10) : 1914-1946.
  • 5Hong Y, Wang J, Cheng D. Adaptive finite time stabilization of class of nonlinear systems [C]. IEEE CDC. Paradise Island: Springer, 2004: 207-212.
  • 6Orlov Y. Finite time stability and robust control synthesis of uncertain switched systems [J]. SIAM J Control Optimation, 2005, 43(7): 1253-1271.
  • 7Panteley E, Loria A. On global uniform asymptotic stability of nonlinear time-varying systems in cascade [J]. System Control Letters, 1998, 33(2): 131-138.
  • 8Aeyels D. A new asymptotic stability criterion for nonlinear time-variant differential equations [J]. IEEE Trans Automatic Control, 1998, 43(7): 968-990.
  • 9Ronald M. Hirschorm. Generalized sliding-mode control for multi-input nonlinear systems[J]. IEEE Trans on Automatic Control, 2006, 51(9): 1410-1422.
  • 10Liu Chun-liang, Xie Xi, Chen Yin-bao. Any order approximate analytical solution of the nonlinear Volterra's integral equation for accelerator dynamic systems[J]. Chinese J Nuclear Physics, 1991, 13(3) : 261-264.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部