摘要
分类是数据挖掘的重要内容之一,其中决策树分类法在海量数据环境中应用最为广泛,本文论述了决策树分类法ID3算法中的信息熵及其增益原理,并总结了ID3算法引进信息理论后的优点。
Classification is an important problem in data mining, decision tree classifiers have found the widest applicability in large - scale data mining environments. This paper analyzes Entropy and information gain in decision tree ID3 method, advantages after the introduction of information theory are summarized.
出处
《吉林工程技术师范学院学报》
2008年第12期91-93,共3页
Journal of Jilin Engineering Normal University
关键词
决策树
ID3
信息增益
decision tree
ID3
information gain