期刊文献+

基于不连续回归树的最大李雅谱诺夫指数计算方法

DISCONTINUOUS REGRESSION TREE ESTIMATION OF LARGEST LYAPUNOV EXPONENT
下载PDF
导出
摘要 最大李雅谱诺夫指数是判断动力系统稳定性和检验混沌的主要依据。运用回归树的随机梯度Boosting拟合非线性函数,提出一种从时间序列计算最大李雅谱诺夫指数的新方法。由于回归树不连续,其雅可比矩阵不存在,传统雅可比方法不能运用。直接从回归树计算最大李雅谱诺夫指数,不考虑拟合函数的雅可比函数。随机模拟结果表明该方法能很好逼近真值,且对噪声和嵌入维数稳健。最后计算移动通话和短信总量两个实测数据的李雅谱诺夫指数,结果表明本文方法和人工神经网络具有同样的结论。 Largest Lyapunov exponent is a useful measure of the stability of a dynamics system and successful method to test for chaos. A new method to estimate largest Lyapunov exponent from observed time series is proposed. It fits nonlinear function by stochastic gradient Boosting of regression tree. Since regression trees are discontinuous, their Jacobin matrix doesn't exist and regular methods based on function estimator fails. It directly calculate Lyapunov exponent from them without using Jacobin matrix of the fitted function. A simulation study shows that the new method approximates the true value excellently and has great robustness to noise and embedding dimeusion. The Lyapunov exponents of two observed daily series, mobile telephonometry and total number of short message, are calculated. The result manifests that this method and artificial neural network deduce the same conclusion.
出处 《机械强度》 CAS CSCD 北大核心 2009年第1期51-54,共4页 Journal of Mechanical Strength
基金 国家自然科学基金资助项目(10772132) 教育部博士点基金资助项目(20070056063)~~
关键词 最大李雅谱诺夫指数 回归树 随机梯度 BOOSTING Largest Lyapunov exponent Regression tree Stochastic gradient Boosting
  • 相关文献

参考文献12

  • 1Wolf A, Swift J, Swirmey H, et al. Determining Lypunov exponents from a time series[J].Physical D, 1985, 16: 285-317.
  • 2Kantz H. A robust method to estimate the maximal Lyapunov exponent of a time series[J]. Physics Letters A, 1994, 185: 77-87.
  • 3Ellner S, Gallant A R, Mecaffrery D, et al. Converge rates and data requirements for Jacobian-based estimates of Lyapunov exponents from data[J]. Physics Letters A, 1991, 153: 357-363.
  • 4Eckmann J P, Ruelle D. Ergodic theory of chaos and strange attractors [J]. Review Modem Physics, 1985, 57(3) : 617-656.
  • 5Eckmann J P, Kamphorst S O, Ruelle D, et al. Lyaptmov exponents from time series[J]. Physics Review A, 1986, 34: 4971-4972.
  • 6Nychka D, Ellner S, Gallant A, et al. Finding chaos in noisy systems [J]. Journal of Royal Statistic Society B, 1992, 54(2) : 399-426.
  • 7Shuai J W, Lian J, Hahn P J, et al. Positive Lyapunov exponents caleulated from time series of strange nonchaotic attractors[J]. Physics Review E, 2001, 64(2): 026220-1-026220-5.
  • 8Abarbanel H. Analysis of observed Chaotic data[ M]. New York: Springer-Verlag, 1995: 34-35.
  • 9Dunki R M. Largest Lyapunov-exponent estimation and selective prediction by means of simplex forecast algorithms [ J ]. Physics Review E, 2000, 62(5): 6505-6515.
  • 10Friedman J H. Stochastic gradient boosting[J]. Computational Statistics & Data Analysis, 2002, 38(4): 367-378.

二级参考文献4

  • 1[2]Stepien J,Zielinski T,Rumian R.Image denoising using scale adaptive lifting schemes.Proc.IEEE.Int.Cofference on Image Processing,Vacouver,Canada,2000.
  • 2[3]Daubechies I,Sweldens W.Factoring wavelet transform into lifting steps.Applied Compute.Harmonic Analysis,1998,4(3):245~267.
  • 3[4]Sweldens W.The lifting scheme:a custom design construction of biorthologonal wavelets.Journal of Applied and Comput.Harmonic Analysis,1996,3(2):186~200.
  • 4[5]Daubechies I,Sweldens W.Factoring wavelet transform into lifting steps.J.Fourier Anal.Appl.,1998,4(3):11~20.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部