期刊文献+

基片表面朝向对ZnO纳米线生长机理的影响

Effect of the Exposure of Substrate on the Growth Mechanism of ZnO Nanowires
下载PDF
导出
摘要 采用热蒸发ZnO粉末法,以金膜为催化剂,在两片表面分别朝上和朝下的Si(100)基片上生长ZnO纳米线(样品分别标为1#和2#)。X射线衍射(XRD)图谱上只存在ZnO的(002)衍射峰,说明ZnO纳米线沿(001)择优取向。通过扫描电子显微镜(SEM)表征发现,ZnO纳米线整齐排列在Si基片上,直径在100nm左右,平均长度为4μm。通过分析得出,两种基片上生长的ZnO纳米线的生长机理是不相同的:1#样品,在基片表面上先生长ZnO薄膜,再在薄膜上生长ZnO纳米线;2#样品,ZnO纳米线直接外延生长在基片表面。结果显示基片表面的朝向影响ZnO纳米线的生长机理。 ZnO nanowires were prepared on two piece of Si (100) substrates which faced up and down separately using Au as catalyzer by thermal evaporation and vapor transport. Only (002) diffraction peaks of ZnO can be found on the X-ray diffraction (XRD) patterns, this indicates that ZnO nanowires exhibit (001) preferred orientation. The scanning electronic microscope (SEM) images show that the average diameter is 100 nm and the average length is 4 μm. They are aligned on Si substrate well. While substrates facing up, the ZnO thin film of thickness of 500 nm is deposited on Si substrate firstly and ZnO nanowires grow on the ZnO thin films. And while substrates facing down, epitaxial ZnO nanowires grow on the substrates. The result indicates that the exposure of substrate affects the growth mechanism of ZnO nanowires.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2009年第1期134-136,147,共4页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(60390073)
关键词 汽-液-固(V-L-S)机理 汽-固(V-S)机理 ZNO纳米线 ZNO薄膜 V-L-S mechanism VoS mechanism ZnO nanowires ZnO thin films
  • 相关文献

参考文献16

  • 1LOOK D C. Recent advances in ZnO materials and devices material[J]. Materials Science and Engineering, 2001, B80: 383-387.
  • 2BJORK M T, OHLSSON B J, SASS T, et al. One- dimensional heteroslructures in semiconductor nanowhiskers[J]. Appl Phys Lett, 2002, 80: 1058-1060.
  • 3BAGNALL D M, CHEN Y F, ZHU Z, et al. Optically, pumped lasing of ZnO at room temperature[J]. Appl Phys Lett, 1997, 70:2230-2231.
  • 4ZHANG Y, WANG N, GAO S. A simple method to synthesize nanowires[J]. Chem Mater, 2002, 14(8): 3564- 3568.
  • 5PAN Z W, DAI Z R, WANG Z L. Nanobelts of semiconducting oxides[J]. Science, 2001, 291(5510): 1947- 1949.
  • 6GAO P X, WANG Z L. Nanopropeller arrays of zinc oxide[J]. Appl Phys Lett, 2004, 84(15): 2883-2885.
  • 7YAN H Q, HE R R, PHAM J, et al. Morphogenesis of one-dimensional ZnO nano-and microcrystals[J]. Adv Mater, 2003, 15(5): 402-405.
  • 8KONG X Y and WANG Z L. Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes/nanosprings[J]. Appl Phys Lett, 2004, 84: 975 -977.
  • 9于伟东,李效民,高相东.高质量四脚状ZnO纳米结构的制备及其影响因素[J].无机材料学报,2005,20(2):332-336. 被引量:4
  • 10刘娟,张跃,齐俊杰,贺建,黄运华,张晓梅.掺铟氧化锌纳米盘的制备、结构及性质研究[J].物理化学学报,2006,22(1):38-42. 被引量:15

二级参考文献66

  • 1Aizpurua,J.;Hanarp,P.;Sutherland,D.S.;Kall,M.;Bryant,G.W.;Garcia de Abajo,F.J.Physical Review Letters,2003,90:57401.
  • 2Li,F.;He,J.;Zhou,W.;Wiley,J.B.Journal of American Chemical Society,2003,125:16166.
  • 3Li,F.;Xu,L.;Zhou,W.L.;He,J.;Banghman,R.H.;Zakhidov,A.A.;Wiley,J.B.Advanced Mater.,2002,14:1528.
  • 4Dai,Y.;Zhang,Y.;Wang,Z.L.Solid State Communications,2003,126:629.
  • 5Dai,Y.;Zhang,Y.;Li,Q.K.;Nan,C.W.Chemical Physics Letters,2002,358:83.
  • 6Dai,Y.;Zhang,Y.;Bai,Y.Q.;Wang,Z.L.Chemical Physics Letters,2003,375:96.
  • 7Li,F.;Ding,Y.;Gao,P.X.;Xin,X.Q.;Wang,Z.L.Angew Chemie,2004,116:5350.
  • 8Xu,C.X.;Sun,X.W.;Dong,Z.L.;Yu,M.B.Applied Physics Letters,2004,85:3878.
  • 9Tian,Z.;Voigt,J.A.;Liu,J.;Mchenzie,B.;Mcdermott,J.;Rodriguez,M.A.;Konishi,H.;Xu,H.Nature Materials,2003,2:821.
  • 10Jie,J.S.;Wang,G.Z.;Han,X.H.;Yu,Q.X.;Liao,Y.;Li,G.P.;Hou,J.G.Chemical Physics Letters,2004,387:466.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部