期刊文献+

高效符号数值混合计算系统研究与设计 被引量:1

Research and design of efficient symbolic and numeric computation system
下载PDF
导出
摘要 符号与数值混合计算是一种利用数值计算和符号计算方法解决大规模问题的计算方法,它为符号计算与数值计算提供一种新的思维模式和方法。近年来,混合计算的理论研究取得一些重要的进展。然而,混合计算的系统软件设计还处于探索阶段。基于此,提出了一种基于改进的开放源代码的符号数值计算应用环境库(SYNAPS)的高效符号数值混合计算系统的设计方法,并进行了实现。实验结果表明,该系统高效可靠。 Symbolic-numerical computation is a novel method of solving large scale problems,which applies both numerical and symbolic methods in its algorithms and provides a new perspective of them.The theoretical research has already obtained much progress while at the same time the designing of symbolic-numerical computation system still lies in diseussion.A novel method is used to design such systems based on the free SYNAPS library,and then the hybrid computation system is implemented.Experimental results show that the system presented here is efficient and reliable.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第5期64-66,共3页 Computer Engineering and Applications
基金 国家重点基础研究发展规划(973)项目(No.2004CB318003) 国家自然科学基金项目(No.10771205) 中国科学院知识创新重要方向项目(No.KJCX2-YW-S02)~~
关键词 计算机代数系统 符号与数值混合计算 数学软件 符号与数值混合应用 Computer Algebra System (CAS) symbolic-numerical computation mathematic software symbolic and numeric applications(SYNAPS)
  • 相关文献

参考文献3

二级参考文献34

  • 1彭长根,李祥.有限域GF(2^m)上椭圆曲线密码体制的运算分析及NTL实现[J].贵州大学学报(自然科学版),2005,22(1):1-6. 被引量:4
  • 2Joachim yon zur Gathen.Modern Computer Algebra[M].Cambridge University Press, 1999.
  • 3Christian Bauer,Alexander Frank et aLIntroduction to the GiNaC Framework for symbolic computation within the C++ Programming Language[J]. J Symbolic Computation,2002;33:1-12.
  • 4K O Geddes et a1.1992 Algorithm for Computer Algebra[M].Kluwer Academic Publishers Boston/Dordrecht/London,1992.
  • 5X S Gao,D Wang.Computer Mathematics[C].In:Proc of ASCM'2000, World Scientific, Singapore, 2000.
  • 6Von ZUR GATHEN J , GERHARD J . Modem computer algebra [ M]. New York: Cambridge University Press, 1999.
  • 7BERNARDIN L, MONAGAN M B. Efficient multivariate factorization over finite fields [ C]// Proceedings of the 12th International Symposium on Applied Algebra, Algebraic Algorithms and Error- Correcting Codes, LNCS 1255. Berlin: Springer-Verlag, 1997:15 - 28.
  • 8KONSTANTINOU E , STAMATIOU Y C , ZAROLIAGIS C D . A software library for elliptic curve cryptography algorithm [ C]// Proceedings of the 10th Annual European Symposium on Algorithms (ESA 2002), LNCS 2461. Berlin: Springer-Verlag, 2002: 101- 130.
  • 9LECERF G. Improved dense multivariate polynomial factorization algorithms[ J]. Journal of Symbolic Computation, 2007, 42(4) : 477 - 494.
  • 10A tour of NTL [ EB/OL]. [ 2007 - 10 - 10]. http://shoup, net/ ntl/doe/tour, html.

共引文献10

同被引文献19

  • 1Lang S, Trotter H. Continued fractions of some algebraic numbers[J]. J Reine Angew Math, 1972(255): 112 - 134.
  • 2Corless R M, Galligo A, Kotsireas I S, et al. A geometricnumeric algorithm for absolute factorization of multivariate polynomials[ C ]//ISSAC' 02 : Proceedings of the 2002 international symposium on symbolic and algebraic computation. New York, USA: ACM Press, 2002:37 -45.
  • 3van der Hulst M-P, Lenstra A K. Factorization of polynomials by transcendental evaluation [ C ]//Lecture Notes in Computer Science. EUROCAL' 85, Berlin: Springer, 1985 (204) : 138 - 145.
  • 4Mignotte M. An inequality about factors of polynomials [J]. MathComp,1974, 28(128): 1153 -1157.
  • 5Lang S. Algebra[ M]. 3^rd Ed. New York: Springer-Verlag, 2002.
  • 6Yang L,Zhang J Z,Hou X R. A criterion of dependency between algebraic equations and its applications[ C ]//Wu WT, Cheng M-D. Proceeding of International Workshop on Mathematics Mechanization 1992. Beijing: International Academic Publishers, 1992 : 110 - 134.
  • 7Zhang J Z, Fang Y, Tang X J. Multivariate polynomial factorization by Interpolation methods (extended abstract ) [ C ]//Pae Sungil, Park H. Proc the 7 ^th Asian Symposimn on Computer Mathematics (ASCM2005). Seoul, 2005.
  • 8Blum M, Micali S. How to generate cryptographically strong sequences of pseudo random bits [ C ]// Proc 23^rd Annum Symposium on Foundations of Computer Science. 1982 : 112 -1171.
  • 9Kannan R, Lenstra A K,Lovdsz L. Polynomial factorization and nonrandomness of bits of algebraic and some transcendental numbers[ J]. Math Comput, 1988, 50(182) : 235 - 250.
  • 10Ferguson H R P, Bailey D H, Amo S. Analysis of PSLQ, An integer relation finding algorithm [ J ]. Math Comput, 1999, 68(225): 351 -369.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部