期刊文献+

CFA图像无损压缩神经网络预测器的设计 被引量:1

Design of Neural Network predictor for lossless compression of CFA image
下载PDF
导出
摘要 论文将神经网络引入预测器设计中,实现了一个用于贝尔模板自然图像无损压缩的神经网络预测器。该预测器含有两个隐含层,具有很强的非线性预测能力,可直接对贝尔模板类型的图像进行无损压缩。为了提高预测精度,在CFA数据的因果邻域像素中实现了边缘检测,并将其应用到预测器中,实验表明该边缘检测方法简单有效。 In this paper,neural network is introduced into the design of predictor,and a neural network predictor for lossless compression of Bayer pattern image is implemented.The predictor which consists of two hidden layers is very suitable for nonlinear prediction,and can be used directly in the lossless compression of CFA raw data.In order to increase the precision of the prediction,an edge detection algorithm is proposed.Experiments show that the algorithm is simple and efficient.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第5期174-176,共3页 Computer Engineering and Applications
关键词 神经网络 预测编码 贝尔模板 边缘检测 neural network prediction coding bayer pattern edge detection
  • 相关文献

参考文献5

  • 1ISO/IEC, 14495-1, ITU-T Recommendation T.87,Information technology-Lossless and near lossless compression of continuous-tone still images-Baseline[S]. 1999.
  • 2Carpentieri B,Weinberger M J,Seroussi G.Lossless compression of continuous-tone images[C]//Proceedings of the IEEE,November 2000,88(11 ) : 1801.
  • 3Knezovic J,Kovac M,Mlinaric H.Classification and blending prediction for lossless image compression[C]//Eleetrotechnical Conference, Melecon 2006, IEEE Mediterranean, May 2006: 486-489.
  • 4Chen Chia-Hsiung,Chen Sao-Jie,Hsiao Pei-Yung.Edge detection on the Bayer pattern[C]//2006 IEEE Asia-Pacific Conference on Circuits and System(APCCAS),Dec.2006:1132-1135.
  • 5Lukac R,Plataniotis K N.Single-sensor camera image compression[J]. IEEE Transactions on Consumer Electronics, 2006,52(2) : 299-307.

同被引文献19

  • 1程培岩,梁进勇,程永强.基于贝尔模板的文本图像压缩及重构算法的研究[J].太原理工大学学报,2006,37(2):150-154. 被引量:2
  • 2谢翔,李国林,王志华.A Low Complexity and High Efficient Method for Image Compression with Bayer CFAs[J].Tsinghua Science and Technology,2007,12(1):22-29. 被引量:1
  • 3Lee S Y, Ortega A. A novel approach of image compression in digital cameras with a bayer color filter array[J].IEEE Int. Conf. Image Processing, 2001, 3: 482-485.
  • 4Strela V, Heller P N, Strang G, et at. The application of multiwavelet filter banks to image processing [J].IEEE Trans. Image Process, 1999, 4: 548-563.
  • 5Tham J Y, Shen L X, Lee S L, et al. A general approach for analysis and application of discrete multiwavelet transforms[J]. IEEE Trans. Signal Processing, 2000, 48: 457-464.
  • 6Chui C K, Lian J. A study on orthonormal multiwavelets[J].Appl. Numer. Math, 1996, 20: 273-298.
  • 7Tham J Y, Shen L, Lee S L, et al. Good multifilter properties: a new toolfor understanding multiwavelets[J]. In Proceedings for International Conference on Imaging Science, Systems and Technology, Las Vegas, 1988: 52-59.
  • 8胡敏.基于小波变换的贝尔图像压缩算法的研究[D].太原:太原理工大学,2009.
  • 9赵江.基于差分预测和小波变换的贝尔模板图像编码[D].太原:太原理工大学,2009.
  • 10Chung Kinghong, Chan Yukhee. A lossless compression scheme for bayer color filter array images [J]. IEEE Trans. Image Processing, 2008, 17(2): 134-143.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部