期刊文献+

最大熵原理在测量数据处理中的应用 被引量:34

Measurement data processing based on maximum entropy method
下载PDF
导出
摘要 针对测量数据处理中掺杂主观因素且不能准确反映客观事实的问题,采用最大熵方法,根据已有的测量数据求取被测量的概率分布,进而对此概率分布在不同矩约束条件下进行估计和评价。测量数据源自计算机产生的呈标准正态分布的测量数据样本,计算测量结果用MATLAB编程做出仿真图形,仿真结果与计算结果表明:采用最大熵方法所确定的概率分布是含有最少主观假定的分布,并随着矩约束的增加,取得的被测量的概率分布更加接近真实分布,用所测定的测量结果进行估计以及用测量不确定度进行评价,可知计算结果是可靠的。 In the analysis of measurement data with adulterated subjective factor, it is difficult to accurately reflect objective measurement result. To solve this problem, the maximum entropy method(MEM)is used to determine the probability distribuion of the given measurement data, and the probability distribution is estimated and evaluated under different moment constraints. The measurement data came from the measurement sample data with standard normal distribution. The result is validated by the MATLAB software. Simulation and calculation results prove that the probability distribution determined by the MEM is the reasonable distribution with least subjective assumption, and the probability distribution obtained would be closer to the real distribution as the moment constrains are increased, and the evaluation of measurement result and its uncertainty features high precision,which means the calculation results are reliable.
作者 程亮 童玲
出处 《电子测量与仪器学报》 CSCD 2009年第1期47-51,共5页 Journal of Electronic Measurement and Instrumentation
关键词 最大熵方法 非线性最小二乘方法 概率密度函数 MATLAB 测量不确定度 Maximum Entropy Method (MEM) nonlinear least squares method probability density function MATLAB measurement uncertainty.
  • 相关文献

参考文献6

二级参考文献23

  • 1章光,朱维申,白世伟.计算近似失效概率的最大熵密度函数法[J].岩石力学与工程学报,1995,14(2):119-129. 被引量:24
  • 2费业泰.现代误差理论及其基本问题[J].宇航计测技术,1996,16(4):2-5. 被引量:20
  • 3李庆扬 王能超 等.数值分析[M].武汉:华中理工大学出版社,1988.101-110.
  • 4诺维茨基 康广庸等(译).测量结果误差估计[M].北京:中国计量出版社,1990..
  • 5[7]Siddal J N. Probabilistic Engineering Design: Principles and Applications[M]. New York: Marcel Dekker Inc., 1983, 92~ 125
  • 6[8]黄兴棣.工程结构可靠性设计[M].北京:人民交通出版社,1992,139~141
  • 7[9]Pandey M D. Direct estimation of quantile functions using the maximum entropy-principle[J]. Structural safety. 2000, 22(1): 61~79
  • 8[12]Ernani V Volpe, Donald Baganoff. Maximum entropy pdfs and the moment problem under near-Gaussian conditions[J]. Probabilistic Engineering Mechanics, 2003, 18(1): 17~29
  • 9[13]Sobczyk K, Trebicki J. Approximate probability distributions for stochastic systems: maximum entropy method[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 168(1): 91 ~ 111
  • 10[14]Zografos K. On maximum entropy characterization of pearson′s type Ⅱand Ⅶ multivariate distributions[J]. Journal of Multivariate Analysis,1999, 71(1): 67~75

共引文献131

同被引文献410

引证文献34

二级引证文献210

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部