摘要
为增强电火花加工过程的稳定性,基于模糊RBF神经网络智能控制,同时利用模糊控制的解耦性,以在电火花加工过程中统计的空载率、正常放电率、不正常放电率(包括电弧及短路放电)、相对于脉冲周期和他抬刀周期的正常放电率为输入,设计了以伺服参考电压、脉冲间隔和抬刀周期为输出的电火花加工模糊RBF神经控制器,并利用MATLAB对设计的模糊RBF神经控制器进行了建模及仿真。仿真结果表明了模糊RBF神经网络控制系统在电火花加工中对于稳定加工状态的有效性。
In order to enhance the machining stability, this paper designs a real - time adjusting intelligent controller based on the fuzzy RBF Neural - Network theory and decoupling theory of fuzzy control. The controller takes the rate of correct spark, error spark( including short and electric arc), idle spark and correct spark with regard to the period of raising machining tool and pulse as inputs, and outputs the change of tool - raising period, pulse period and reference voltage. The controller is simulated by MATLAB, and the results show that the controller works well and is efficient in EDM.
出处
《计算机仿真》
CSCD
北大核心
2009年第1期181-184,共4页
Computer Simulation