期刊文献+

涡扇发动机早期退化性能的线性变参数估计 被引量:2

Linear parameter varying estimation for early deteriorated turbo fan engine performance parameter
原文传递
导出
摘要 针对涡扇发动机线性变参数(Linear parameter varying,LPV)模型,给出了一种新的早期退化航空发动机部件性能LPV滤波器设计方法.该方法采用仿射依赖于参数的二次Lyapunov函数,在仿射二次稳定性的基础上,引入多凸性引理将滤波器求解问题转化为线性矩阵不等式(Linear matrix inequalities,LMI)约束下的凸优化问题,避免了求解参数化线性矩阵不等式(Parameterized linear matrix inequalities,PLMI)约束下的优化问题.针对某型早期退化涡扇发动机的仿真表明,该方法能以较高精度估计性能退化参数,且鲁棒性强,增益调度简单,具有一定的工程意义. To estimate the component performance parameters of early deteriorated areoengine, a linear parameter varying(LPV)filter was given for LPV model of a turbofan engine. Based on conceptions of affined parameter-dependent quadratic Lyapunov function and affined quadratic stability, the filter design method was converted into a normal linear matrix inequalities(LMI) constrained convex optimization by introducing the lemma of multiconvexity. Also the difficulties in solving the optimization problem with parameterized linear matrix inequalities(PLMI) constraint were avoided. Besides the convenience of filter gain scheduling, the accuracy and robustness of the filter were validated by simulation on parameter estimation for the early-deteriorated turbofan engine.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2009年第1期98-103,共6页 Journal of Aerospace Power
基金 国家自然科学基金(50675178)
关键词 航空发动机 线性变参数滤波 参数依赖的Lyapunov函数 仿射二次稳定 参数化线性矩阵不等式 aeroengine linear parameter varying filtering parameter-dependent Lyapunov function affined quadratic stability parameterized linear matrix inequalities (PLMI)
  • 相关文献

参考文献8

  • 1Mathioudakis K, Kamboukos P H. Turbofan performance deterioration tracking using nonlinear models and optimization techniques [J]. Journal of Turbomachinery, 2002, 124:580-587.
  • 2Lakshminarasimha A N, Boyce M P. Modeling and analysis of gas turbine performance deterioration [J]. Journal of Engineering for Gas Turbines and Power, 1994,116 : 46- 51.
  • 3Dan S. Kalman filtering with inequality constraints for turbofan engine health estimation [R]. NASA/TM 200- 212111.
  • 4Adibhatla S, Gastineau Z. Tracking filter selection and control mode selection for model based control [C]// Proceeding of the 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Indianapolis, Indiana: AIAA,AIAA 1994-3204.
  • 5Wu F, Prajna S. A new solution approach to polynomial LPV system analysis and synthesis [C]// Proceeding of the 2004 American Control Conference. Boston, Massa chusetts: [s. n. ],2004:1362-1367.
  • 6Gahinet F, Apkarian P, Chilali M. Affine parameter-dependent Lyapunov function and real parametric uncertainty [J]. IEEE Transaction on Automatic Control, 1996, 41 (3) : 436-442.
  • 7Sato M. Filter design for LPV system using quadratically parameter-dependent Lyapunov functions [J]. Automatica,2006,42 : 2017-2023.
  • 8Reberga L, Henrion D, Bernussou J, et al. LPV modeling of a turbofan engine [C]// Proceeding of the 16th IFAC World Congress. Prague, Czech: [s. n. ], 2005 : 3-8.

同被引文献24

  • 1王曦,林永霖,吴永康.H_∞控制在飞行/推进综合控制系统中的应用[J].航空动力学报,2004,19(5):695-702. 被引量:5
  • 2Bumroongsri P, Kheawhom S. MPC for LPV systems based on parameter-dependent Lyapunov function with perturbation on control input strategy[J]. EngineeringJournal,2012,16(2) :61 -72.
  • 3Lu B,Wu F. Switching LPV control for high performance tactical aircraft[R]. AIAA 2010 7903,2010.
  • 4Li S Q,Zhang S X. A modified LPV modeling technique for turbofan engine control system[R]. Taiyuan: International Coni'erenee on Computer Application and System Model- ing,2010.
  • 5Giarre L, Bauso D, Falugi P, et al. LPV model identifica- tion for gain scheduling control:an application to ro-tating stall and surge control[J]. Control Engineering Practice, 2006,14(4) :351-361.
  • 6Jean B IJ. Global optimization with polynomials and the problem of moments[J]. Society for Industrial and Applied Mathematics, 2001,11(3) : 796-817.
  • 7Scherer C W. LMI relaxation in robust control[J]. Europe- an Journal of Control,2006,12(1) ;3 -29.
  • 8Anirudha M,Amir A A,Russ T. Control design along traj- ectories with sums of squares programming[R]. Karlsru- he: International Conference on Robotics and Automation, 2013.
  • 9Kazuo T, Hiroto Y, Hiroshi O, et al. A sum of squares ap- proach to modeling and control of nonlinear dynamical sys terns with polynomial fuzzy systems[J]. IEEE Transac tions On Fuzzy Systems,2009,17(4):911-922.
  • 10Karin G, Pablo A P. Symmetry groups, semidefinite pro grams and sums of squares[J]. Journal of Pure and Ap plied Algebra,2004,192(1/2/3) :95-128.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部