期刊文献+

氨基酸和二肽组成对嗜压微生物蛋白质稳定性的影响 被引量:3

Influence of amino acid and dipeptide composition on protein stability of piezophilic microbes
原文传递
导出
摘要 【目的】比较嗜压和非嗜压微生物中蛋白质在氨基酸和二肽组成上的差异对嗜压蛋白稳定性机理的了解及在此基础上的定向改造具有重要意义。【方法】利用4种微生物全蛋白质组信息,统计了639对直系同源序列二级结构氨基酸组成及二肽组成并计算其偏差。【结果】在β折叠和无规则卷曲中二者差异明显,β折叠中,嗜压蛋白含更多的缬氨酸,异亮氨酸,亮氨酸,更少的精氨酸,赖氨酸,天冬氨酸;无规则卷曲中,嗜压蛋白含更多的缬氨酸和异亮氨酸,更少的甘氨酸和脯氨酸。而嗜压蛋白存在更多的YM、MN、KD、QC、CI、MW、MM、CY、WQ、HC、RC和QH,更少TW、MS、VD、DH、YE、CT、MW、CF、CK、CM、MY、QI、TH、MQ、QQ和MC。【结论】二肽比氨基酸包含更多的结构和序列信息,更有利于了解嗜压蛋白稳定性机制及指导其定向改造。 [Objective]To compare the amino acid and dipeptide composition of proteins from piezophilic and non-piezophilic microbes is of great significance for understanding the stability of piezophilic protein and directed mutation of them. [Methods] The amino acids of different secondary structure and the dipeptides of 639 orthologs proteins were counted and the deviation of them were calculated. [Results] The amino acid composition based on secondary structure and the dipeptide composition reveals some common trends.The amino acids vary widely in β sheet and coil. In β sheet, piezophilic proteins contain more amino acids such as Val, Ile and Leu, whereas less Arg, Lys and Asp; in coil, piezophilic proteins contained more amino acids such as Val and Ile, whereas less Gly and Pro. On the other hand, piezophilic proteins contain more dipeptides such as YM, MN, KD, QC, CI, MW, MM, CY, WQ, HC, RC and QH, whereas less dipeptides such as TW, MS, VD, DH, YE, CT, MW, CF, CK, CM, MY, QI, TH, MQ, QQ and MC. [Conclusion] Dipeptide contains more structure and sequence information than amino acid, and it will be more helpful for understanding the mechanism of piezophilic adaptation and guiding the engineering of proteins.
出处 《微生物学报》 CAS CSCD 北大核心 2009年第2期198-203,共6页 Acta Microbiologica Sinica
基金 国家自然科学基金(20806031) 福建省自然科学基金(2007J0360)~~
关键词 嗜压微生物 二肽组成 蛋白质稳定性 二级结构 适压机制 Piezophilic microbes dipeptide composition protein stability secondary structure mechanism of piezophilic adaptation
  • 相关文献

参考文献21

  • 1Yayanos AA, Dietz AS, Boxtel RV. Isolation of a deep sea barophilic bacterium and some of its growth characteristic. Science, 1979, 205: 808- 810.
  • 2游志勇,汤熙翔,肖湘.高压技术在深海沉积物兼性嗜压菌的筛选和鉴定中的应用[J].台湾海峡,2007,26(4):555-561. 被引量:5
  • 3刘敏,李越中.深海细菌及其适压机制[J].微生物学杂志,2003,23(4):32-34. 被引量:3
  • 4Vezzi A, Campanaro S, D' Angelo M, et al. Life at depth : Photobacterium profundum genome sequence and expression analysis. Science, 2005,307 : 1459 - 1461.
  • 5Francesca S, Stefano C, Federico ML, et al. Piezophilic adaptation: a genomic point of view. Journal of Biotechnology, 2006, 126:11 - 25.
  • 6Somero GN. Adaptations to high hydrostatic pressure. Annual Review of Physiology, 1992, 54 : 557 - 577.
  • 7Di Giulio M. A comparison of proteins from Pyrococcus furiosus and Pyrococcus abyssi : barophily in the physicochemical properties of amino acids and in the genetic code. Gene, 2005, 346: 1- 6.
  • 8Delong EF, Franks DG, Yayanos AA. Evolutionary relationships of cultivated psychrophilic and barophilic deepsea bacteria. Applied and Environmental Microbiology, 1997, 63 : 2105 - 2108.
  • 9Purcarea C, Simon V, Prieu, D, Herve G. Purification and characterization of carbamoyl-phosphate synthetase from the deep-sea hyperthermophilic arehaebaeterium Pyrococcus abyssi. European Joural of Biochemistry, 1996, 236:189 - 199.
  • 10Sandip P, Sumit KB, Sabyasachi D. Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes. Genome Biology, 2008, 9 : R70 ( doi : 10.1186/gb-2008-9-4-r70).

二级参考文献16

  • 1Kato C. Sato T. Horikoshi K. Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples [J]. Biodivers Gonserv, 1995, 4:1 -9.
  • 2Yayanos A A. Barophiles and Piezophiles In Nature Encyclopedia of Life Sciences[ M]. London: Nature Publishing. 2001.
  • 3Hough D W, Danson M J. Current opinion in chemical biology [ J]. Extremozymes, 1999, 3:39 -46.
  • 4Lammi M J, Elo M A, Helminen H J, et al. Hydrostatic pressure-induced changes in cellular protein synthesis [J]. Biorheology, 2004, 41:309 -313.
  • 5Ferguson R L, Buckley E N, Palumbo A V. Response of marine bacterioplankton to differential filtration and confinement [J]. Appl Environ Microbiol, 1984, 47:49 -55.
  • 6Wang F P, Wang P, Xiao X, et al. Isolation of extremophiles with the detection and retrieval of Shewanella strains in deep-sea sediments from the west Pacific [ J ]. Extremophiles, 2004, 8:165 -168.
  • 7Yayanos A A, Dietz A S, Boxtel R V. Isolation of a deep-sea barophilic bacterium and some of its growth characteristics [ J ]. Science, 1979, 205 : 808 - 810.
  • 8Kato C ,Horikoshi K. Gene Expression Under Hydrostatic Pressure High Pressure Bioscience and Biotechnology (Hayashi R, Balny C eds)[M]. Elsevier Science, Amsterdam, 1995.59 -66.
  • 9Kato C, Inoue A. , Horikoshi K. Isolating and characterizing deep-sea microorganisms [ J ]. Trends Biotechnel, 1996, 14:6-12.
  • 10Kato C, Li L, Horikoshi K, et al. Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11 000 meters [J].Appl Environ Microbiol, 1998, 64:1 510- 1 513.

共引文献6

同被引文献61

  • 1Sharma A, Scott JH, Cody GD, et al. Microbial activity at gigapascal pressures. Science, 2002, 295, 1514- 1516.
  • 2Fumiyoshi A. Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival: perspectives from piezophysiology. Bioscience Biotechnology and Biochemistry, 2007, 71, 2347-2357.
  • 3Bartlett DH. Pressure effects on in vivo microbial processes. Biochimca Biophysica Acta, 2002, 1595, 367-381.
  • 4Vezzi A, Campanaro S, D Angelo M, et al. Life at depth: Photobacterium profundum genome sequence and expression analysis. Science, 2005, 307, 1459-1461.
  • 5Saito R. and Nakayama A. Differences in malate dehydrogenases from the obligately piezophilic deep-sea bacterium Moritella sp. strain 2D2 and the psychrophilic bacterium Moritella sp. strain 5710. FEMS Microbiology Letters, 2004, 233,165-172.
  • 6Jaenicke R. Protein stability and molecular adaptation to extreme conditions. European Journal of Biochemistry, 1991, 202, 715-725.
  • 7Somero GN. Adaptations to high hydrostatic pressure. Annual Review of Physiology, 1992, 54, 557-577.
  • 8Yoshikazu N, Tetsuya M, Fumiyoshi A. Pressureadaptive differences in lactate dehydrogenases of three hagfishes: Eptatretus burgeri, Paramyxine atami and Eptatretus okinoseanus. Extremophiles , 2008, 12, 477- 480.
  • 9Francesca S, Stefano C, Federico ML, et al. Piezophilic adaptation: a genomic point of view. Journal of Biotechnology, 2006, 126, 11-25.
  • 10Chilukuri LN, Bartlett DH. Isolation and characterization of the gene encoding single-stranded-DNA-binding protein (SSB) from four marine Shewanella strains that differ in their temperature and pressure optima for growth. Microbiology, 1997, 143, 1163-1174.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部