期刊文献+

非线性混沌系统的鲁棒自适应控制 被引量:1

Robust adaptive control for nonlinear chaotic systems
下载PDF
导出
摘要 研究了不确定非线性Chua’s混沌系统的跟踪控制问题.通过坐标变换将Chua’s系统转换为严格反馈控制系统的一种通用形式,然后利用Backstepping方法和鲁棒控制技术,设计了参数自适应控制律,对存在的不确定性和未知干扰的非线性系统实现了输出跟踪。基于Lyapunov稳定性理论所设计的控制器不仅使系统输出跟踪给定的期望输出,而且使得系统对于所允许的不确定系统状态全局一致有界。仿真结果表明了所设计方法的有效性。 Tracking control of a nonlinear uncertain Chugs chaotic system is studied. With coordinate transform, Chugs chaotic system is transformed to a general form of a strict-feedback control system. Combining the backstepping method with robust control technology, an adaptive parameter control law for a robust output feedback control scheme is developed for output tracking of nonlinear unknown systems. It is shown that the derived robust adaptive controller based on Lyapunov stability theory can guarantee global uniformly bounded ultimate property for all states of the closed-loop system, and lead to tracking error decreasing at exponential speed. The simulation results show the effectiveness of the proposed approach.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第1期96-99,共4页 Journal of Chongqing University
基金 国家自然科学基金资助项目(90716028)
关键词 Chua’s混沌系统 自适应控制 BACKSTEPPING方法 非线性系统 Chua' s chaotic system adaptive control backstepping method nonlinear system
  • 相关文献

参考文献15

  • 1ZHOU J, MENG J E. Adaptive output control of a class of uncertain chaotic systems[J]. Systems & Control Letters, 2007,56(6) :452-460.
  • 2YU Y G, ZHANG S C. Adaptive backstepping synchronization of uncertain chaotic system [J].Chaos, Solitons and Fractals, 2004, 21:643-649.
  • 3YASSEN M T Adaptive chaos control and synchronization for uncertain new chaotic dynamical system [J]. Physics Letters A , 2006, 350:36-43.
  • 4ZHANG H, XI K M. Active control of uncertain chaoic systems with parametric perturbation [J]. International Journal of Modern Physics B, 2006, 20(16) : 2255-2264.
  • 5ZHOU J, WEN C, ZHANG Y. Adaptive output control of a class of timevarying uncertain nonlinear systems[J]. Nonlinear Dynamics System Theory, 2005 (5) :285-298.
  • 6JI H B, XI H S. Adaptive output-feedback tracking of stochastic nonlinear systems [J]. IEEE Transactions on Automatic Control, 2006,51(2) :355-360.
  • 7YU Y G, ZHANG S C. Adaptive backstepping synchronization of uncertain chaotic system [J]. Chaos, Solitons and Fractals, 2004 (21) :643-649.
  • 8JIANG Z P, PAROLY L. Design of robust adaptive controller for nonlinear systems with uncertainties [J]. Automatica, 1998,34(7) : 825-840.
  • 9YANG C L, RUAN R Y, GONG M K. Robust adaptive state feedback controller design and analysis of a class of uncertain nonlinear systems [J]. Acta Mathematiea Scientia, 2004,24(1) : 26-37.
  • 10PECORA L M , CARROLL T L. Synchronization in chaotic system [J]. Physics Rev Letters, 1990,64(2):821-824.

同被引文献14

  • 1杨小平,付静.一种混沌密码体制的实现[J].四川师范大学学报(自然科学版),2004,27(4):431-433. 被引量:4
  • 2Chen G,Dong X N.On feedback control of chaotic continuous-time systems[J].IEEE Trans Circuits Systems I:Fundamental Theory and Applications,1993,40:591-601.
  • 3Kocarev L.Chaos-based cryptography:A brief overview[J].IEEE Circaits and Systems Magazine,2001,1 (3):6-21.
  • 4Luo G P,Zhu C R.Transversal homoclinic orbits and chaos for partial functional differential equations[J].Nonlinear Anal,2009,71 (12):6254-6264.
  • 5He X,Shu Y L,Li C D,et al.Nonlinear analysis of a novel three-scroll chaotic system[J].J Appl Math Comput,2012,39:319-332.
  • 6Wang X Y,Yu Q.A block encryption algorithm based on dynamic sequences of multiple chaotic systems[J].Commun Nonl Sci Num Simul,2009,14:574-581.
  • 7Xia M,Fang J A,Tang Y,et al.Dynamic depression control of chaotic neural networks for associative memory[J].Neurocomputing,2010,73:776-783.
  • 8Adachi M,Aihara K.Associative dynamics in a chaotic neural network[J].Neural Networks,1997,10:83-98.
  • 9Perko L.Differential Equation and Dynamical Systems[M].2nd ed.New York:Spinger-Vedag,1996:129-134.
  • 10Kuznetsov Y.Elements of Applied Bifurcation Theory[M].2nd ed.New York:Springer-Verlag,1998:158-168.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部