摘要
以自行开发的混合呼吸仪对异养菌好氧降解有机物过程进行呼吸测量,结合数学拟合分别对实验室污泥和污水处理厂污泥碳氧化过程模型参数进行了识别与估计。结果表明,2种污泥各自3个组合参数估计值的变动系数CV分别在13%以内和8%以内,单参数估计值的CV分别在25%以内和10%以内,混合呼吸仪高的测试频率和测量精度能够改善参数估计精度。呼吸测量实验初始基质浓度和污泥浓度通过影响呼吸速率曲线特性(信息含量)而影响参数估计的精度,是此类实验中需要重点优化的条件。
A new hybrid respirometer is used to measure the oxygen uptake rate (OUR) of COD aerobic biodegradation process. Parameter identification and estimation of carbon oxidation process of an Activated Sludge Model are studied by combining the OUR data and mathematical fitting variation (CVs) for the three combined parameters estimated are below 13% f of curves. Coefficients of or activated sludge from a laboratory and below 8% for activated sludge from a wastewater treatment plant. For single parameter estimation, the CVs are below 25% and below 10%, respectively. High measurement frequency and precision of the hybrid respirometer can improve the precision of parameter estimation. Initial concentrations of the substrate and the activated sludge of the respirometric experiment are key conditions that must be optimized to obtain high-precision parameter estimation due to their effect on OUR curw characteristics.
出处
《重庆大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2009年第2期187-191,共5页
Journal of Chongqing University
基金
国家自然科学基金资助项目(50578166)
关键词
活性污泥模型
识别
呼吸测量
activated sludge model
identification
respirometry