期刊文献+

Precise Rates in the Law of the Logarithm for the Moment Convergence in Hilbert Spaces 被引量:2

Precise Rates in the Law of the Logarithm for the Moment Convergence in Hilbert Spaces
原文传递
导出
摘要 Let (X, Xn; n ≥1) be a sequence of i.i.d, random variables taking values in a real separable Hilbert space (H, ||·||) with covariance operator ∑. Set Sn = X1 + X2 + ... + Xn, n≥ 1. We prove that, for b 〉 -1, lim ε→0 ε^2(b+1) ∞ ∑n=1 (logn)^b/n^3/2 E{||Sn||-σε√nlogn}=σ^-2(b+1)/(2b+3)(b+1) B||Y|^2b+3holds if EX=0,and E||X||^2(log||x||)^3bv(b+4)〈∞ where Y is a Gaussian random variable taking value in a real separable Hilbert space with mean zero and covariance operator ∑, and σ^2 denotes the largest eigenvalue of ∑. Let (X, Xn; n ≥1) be a sequence of i.i.d, random variables taking values in a real separable Hilbert space (H, ||·||) with covariance operator ∑. Set Sn = X1 + X2 + ... + Xn, n≥ 1. We prove that, for b 〉 -1, lim ε→0 ε^2(b+1) ∞ ∑n=1 (logn)^b/n^3/2 E{||Sn||-σε√nlogn}=σ^-2(b+1)/(2b+3)(b+1) B||Y|^2b+3holds if EX=0,and E||X||^2(log||x||)^3bv(b+4)〈∞ where Y is a Gaussian random variable taking value in a real separable Hilbert space with mean zero and covariance operator ∑, and σ^2 denotes the largest eigenvalue of ∑.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第2期191-208,共18页 数学学报(英文版)
基金 supported by National Natural Science Foundation of China (No.10771192 70871103)
关键词 the law of the logarithm moment convergence tail probability strong approximation the law of the logarithm, moment convergence, tail probability, strong approximation
  • 相关文献

参考文献1

二级参考文献12

  • 1Wang, D. C., Su, chun.: Moment complete convergence for B valued I.I.D. random variables. Acta Mathematicae Applicatae Sinica (in Chinese), in press
  • 2Csorgo, M., Revesz, P.: Strong Approximations in Probability and Statistics, Academic Press, New York,1981
  • 3Sakhanenko, A. I.: On unimprovable estimates of the rate of convergence in the invariance principle. In Colloquia Math. Soci. Janos Bolyai, 32, 779-783 (1980), Nonparametric Statistical Inference, Budapest (Hungary)
  • 4Sakhanenko, A. I.: On estimates of the rate of convergence in the invariance principle. In Advances in Probab. Theory: Limit Theorems and Related Problems (A. A. Borovkov, Ed.), Springer, New York,124-135, 1984
  • 5Sakhanenko, A. I.: Convergence rate in the invariance principle for nonidentically distributed variables with exponential moments. In Advances in Probab. Theory: Limit Theorems for Sums of Random Variables (A.A. Borovkor, Ed.), Springer, New York, 2-73, 1985
  • 6Billingsley, P.: Convergence of Probability Measures, J. Wiley, New York, 1968
  • 7Einmahl, U.: The Darling-Erdo Theorem for sums of i.i.d, random variables. Probab. Theory Relat. Fields,82, 241-257 (1989)
  • 8Feller, W.: The law of the iterated logarithm for idnetically distributed random variables. Ann. Math., 47,631-638 (1945)
  • 9Petrov, V. V.: Limit Theorem of Probability Theory, Oxford Univ. Press, Oxford, 1995
  • 10Li, D., Wang, X. C., Rao, M. B.: Some results on convergence rates for probabilities of moderate deviations for sums of random variables. Internet. J. Math and Math. Sci., 15(3), 481-498 (1992)

共引文献10

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部