期刊文献+

Expansion of Frames to Tight Frames 被引量:7

Expansion of Frames to Tight Frames
原文传递
导出
摘要 We show that every Bessel sequence (and therefore every frame) in a separable Hilbert space can be expanded to a tight frame by adding some elements. The proof is based on a recent generalization of the frame concept, the g-frame, which illustrates that g-frames could be useful in the study of frame theory. As an application, we prove that any Gabor frame can be expanded to a tight frame by adding one window function. We show that every Bessel sequence (and therefore every frame) in a separable Hilbert space can be expanded to a tight frame by adding some elements. The proof is based on a recent generalization of the frame concept, the g-frame, which illustrates that g-frames could be useful in the study of frame theory. As an application, we prove that any Gabor frame can be expanded to a tight frame by adding one window function.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第2期287-298,共12页 数学学报(英文版)
基金 supported partially by the National Natural Science Foundation of China (10571089,10671062) the Program for New Century Excellent Talents in Universities the Innovation Scientists and Technicians Troop Construction Projects of He'nan Province of China (084100510012) the Natural Science Foundation for the Education Department of He'nan Province of China (2008B510001)
关键词 FRAME tight frame G-FRAME Gabor frame frame expansion frame, tight frame, g-frame, Gabor frame, frame expansion
  • 相关文献

参考文献15

  • 1Chidume, C. E., Shahzad, N.: Strong convergence of an implicit iteration process for a finite family of nonexpansive mappings. Nonlinear Analysis, 62, 1149-1156 (2005)
  • 2Sun, Z.: Strong convergence of an implicit iteration process for a finite family of asymptotically quasinonexpansive mappings. J. Math. Anal. Appl., 286, 351-358 (2003)
  • 3Tan, K. K., Xu, H. K.: Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process. J. Math. Anal. Appl., 178, 301-308 (1993)
  • 4Xu, H. K., Ori, R. G.: An implicit iteration process for nonexpansive mappings. Numer. Fuct. Anal. Optim, 22, 767-773 (2001)
  • 5Zhou, H. Y.: Non-expansive mappings and iterative methods in uniformly convex Banach spaces. Acta Mathematica Sinica, Eglish Series, 20(5), 829 836 (2004)
  • 6Zhang, S. S., Tian, Y. X.: On the Halpern's open question. Acta Mathematica Sinica, Chinese Series, 48(5), 979-984 (2005)
  • 7Zhou, Y., Chang, S. S.: Convergence of implicit iteration process for a finite family of asymptotically nonexpansive mappings in Banach spaces. Numer. Funct. Anal. Appl., 23, 911-921 (2002)
  • 8Osilike, M. O.: Imiplicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps. J. Math. Anal. Appl., 294, 73-81 (2004)
  • 9Chen, R., Song, Y., Zhou, H.: Convergence Theorems for Implicit Iteration Process for a Finite Family of Continuous Pseudocontractive Mappings. J. Math. Anal. Appl., 314, 701-709 (2006)
  • 10Osilike, M. O., Udomene, A.: Demiclosedness principle results for strictly pseudocontractive mappings of Browder-Petryshyn type. J. Math. Anal. Appl., 256, 431-445 (2001)

同被引文献64

  • 1丁明玲,朱玉灿.g-框架的稳定性[J].福州大学学报(自然科学版),2007,35(3):321-325. 被引量:10
  • 2肖祥春,朱玉灿,王燕津,丁明玲.由g-Bessel序列定义的线性算子的一些性质[J].福州大学学报(自然科学版),2007,35(3):326-330. 被引量:6
  • 3DUFFIN R J, SCHAEFFER A C. A class of nonharmonic Fourier series[J]. Trans Amer Math Soc, 1952,72:341 -366.
  • 4DAUBECHIES I, GROSSMANN A, MEYER Y. Painless nonorthogonal expansions[J]. J Math Phys, 1986,27:1271 - 1283.
  • 5CASAZZA P G. The art of frame theory [ J ]. Taiwan Residents J of Math, 2000,4 (2) :129 -201.
  • 6CHRISTENSEN O. An Introduction to Frames and Riesz Bases[ M]. Boston: Birkhauser, 2003.
  • 7SUN W C. G-frames and g-Riesz bases[J]. J Math Anal Appl, 2006,322( 1 ) :437 -452.
  • 8SUN W C. Stability of g-frames[J]. J Math Anal Appl, 2006,326(2) :858 -868.
  • 9LI D F, SUN W C. Some equalities and inequalities for generalized frames[J]. Chin Jour of Contemp Math, 2008,29(3) : 301 - 308.
  • 10YANG X H, LID F. Some new equalities and inequalities for g-frames and their dual frames [ J ]. Aeta Mathematica Siniea, Chinese Series, 2009, 52 (5) : 1033 - 1040.

引证文献7

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部