期刊文献+

基于调整学习的聚类算法

Clustering Algorithm Based on Fine-Tuned Learning
下载PDF
导出
摘要 调整学习是一种逐步求精的近似学习方法,是提高局部搜索解质量的重要途径之一。该方法调用调整算子填平局部最优解陷阱,构造一系列不同粒度的搜索空间,降低局部最优解对解质量的影响。利用调整学习的基本原理设计了聚类算法框架CAT-L,并给出了适合处理聚类问题的噪声平滑调整算子。实验对比了经典FCM算法与FCM-CAT-L(以FCM算法作为CAT-L框架的聚类算子)算法的聚类质量。实验结果表明,调整学习方法对提高聚类质量是有效的。 Fine- tuned learning, one of the important ways to increase the quality of solution of local search algorithm, is an approximation learning method. A fine- tuned operator is used to create a series of different granularity search spaces in which most traps haven't been smoothed, so the influence of the traps is reduced. In this paper, a clustering algorithm framework CAT_L (Clustering Algorithm based on Fine - tuned Learning), stimulated by fine- tuned learning, is proposed. Simultaneously, a noise smoothing fine - tuned oparator, which adapts to deal with clustering problem, is designed. Compared the quality of classical FCM and FCM - CAT_L through experiments, the results show that fine- tuned learning is very effective for increasing the quality of duster.
出处 《计算机技术与发展》 2009年第2期58-61,65,共5页 Computer Technology and Development
基金 国家自然科学基金重大项目(90412007) 国家自然科学基金(60503003) 安徽省教育厅自然科学基金(KJ2008B133 KJ2008B05ZC)
关键词 调整学习 调整算子 局部搜索 聚类算法 FCM fine - tuned iearning fine - tuned operator local search clustering algorithm FCM
  • 相关文献

参考文献14

  • 1Xu Rui,Wunseh D. Survey of Clustering Algorithms[J].IEEE Trans on Neural Network,2005,16(3) :645 - 678.
  • 2Berkhin P. Survey of clustering data mining techniques[R]. San Jose,CA: [s. n. ], 2002.
  • 3钱卫宁,周傲英.从多角度分析现有聚类算法(英文)[J].软件学报,2002,13(8):1382-1394. 被引量:86
  • 4Jain A K,Dubes R C. Algorithms for clustering data[M]. Englewood Cliffs, New Jersey: Prentice Hall, 1998:89 - 131.
  • 5Hartigan J, Wong M. Algorithm AS136: A k-means clustering algorithm[J]. Applied Statistics, 1979(28) :100 - 108.
  • 6Kaufman L,Rousseeuw P J. Finding Groups in Data: an Introduction to Cluster Analysis[ M]. New York: John Wiley & Sons, 1990.
  • 7Ng R, Han J. CLARANS: A method for clustering objects for spatial data mining [ J ]. IEEE Trans on Knowl, Data Eng., 2002,14(5) : 1003 - 1016.
  • 8Babu G P, Murty M N. Simulated annealing for selecting optimal initial seeds in the K-means algoritlma[ J ]. Indian Journal of Pure and Applied Mathematics, 1994,25( 1 - 2) : 85 - 94.
  • 9Wang Wei, Yang Jiong, Muntz R. STING: A statistical information grid approach to spatial data mining[C]//In Proceeding of the 23rd VLDB Conference. Athens, Greece: [s. n. ], 1997:186 - 195.
  • 10Yager R, Filev D. Approximate clustering via the mountain method[J]. IEEE Tram. Syst., Man, Cybem., 1994,24 (8) :1279- 1284.

二级参考文献36

  • 1[1]Fasulo, D. An analysis of recent work on clustering algorithms. Technical Report, Department of Computer Science and Engineering, University of Washington, 1999. http://www.cs.washington.edu.
  • 2[2]Baraldi, A., Blonda, P. A survey of fuzzy clustering algorithms for pattern recognition. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 1999,29:786~801.
  • 3[3]Keim, D.A., Hinneburg, A. Clustering techniques for large data sets - from the past to the future. Tutorial Notes for ACM SIGKDD 1999 International Conference on Knowledge Discovery and Data Mining. San Diego, CA, ACM, 1999. 141~181.
  • 4[4]McQueen, J. Some methods for classification and Analysis of Multivariate Observations. In: LeCam, L., Neyman, J., eds. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. 1967. 281~297.
  • 5[5]Zhang, T., Ramakrishnan, R., Livny, M. BIRCH: an efficient data clustering method for very large databases. In: Jagadish, H.V., Mumick, I.S., eds. Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data. Quebec: ACM Press, 1996. 103~114.
  • 6[6]Guha, S., Rastogi, R., Shim, K. CURE: an efficient clustering algorithm for large databases. In: Haas, L.M., Tiwary, A., eds. Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. 73~84.
  • 7[7]Beyer, K.S., Goldstein, J., Ramakrishnan, R., et al. When is 'nearest neighbor' meaningful? In: Beeri, C., Buneman, P., eds. Proceedings of the 7th International Conference on Data Theory, ICDT'99. LNCS1540, Jerusalem, Israel: Springer, 1999. 217~235.
  • 8[8]Ester, M., Kriegel, H.-P., Sander, J., et al. A density-based algorithm for discovering clusters in large spatial databases with noises. In: Simoudis, E., Han, J., Fayyad, U.M., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD'96). AAAI Press, 1996. 226~231.
  • 9[9]Ester, M., Kriegel, H.-P., Sander, J., et al. Incremental clustering for mining in a data warehousing environment. In: Gupta, A., Shmueli, O., Widom, J., eds. Proceedings of the 24th International Conference on Very Large Data Bases. New York: Morgan Kaufmann, 1998. 323~333.
  • 10[10]Sander, J., Ester, M., Kriegel, H.-P., et al. Density-Based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery, 1998,2(2):169~194.

共引文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部