期刊文献+

一种动态调整的蚁群聚类算法 被引量:4

A Dynamic Adjustive Ant Colony Clustering Algorithm
下载PDF
导出
摘要 蚁群算法是优化领域中新出现的一种仿生进化算法,基于蚁群算法的聚类算法已经在当前的数据挖掘研究中得到应用。文中针对早期蚁群聚类算法的缺点,提出动态调整的蚁群聚类算法,通过加入运动速度不同的蚁群、半径自适应调整、短期记忆、强行放下等策略,来指导蚁群的移动行为,降低蚁群移动的随意性,减少了蚂蚁的搜索时间,提高聚类性能。仿真实验表明:改进算法能有效地提高算法效率且取得较好的聚类结果。 Ant colony algorithm is a novel category of bionic algorithm, the ant - based clustering algorithm has currently applications in the data mining community. Based the disadvantage of the classical algorithm, presents a dynamic adjustive ant - clustering algorithm, including different speed ant colony, adaptive radius adjustment, short memory, force drop action which guide the ant's movement. The algorithm can lower the randomness of ant's moving and reduce the time of ant's searching to improve the performance. Experiment shows that the new algorithm effectively advances the efficiency of algorithm and the result of clustering.
出处 《计算机技术与发展》 2009年第2期145-147,共3页 Computer Technology and Development
基金 安徽省自然科学基金项目(KJ2008B092)
关键词 蚁群算法 运动速度不同的蚁群 半径的自适应调整 短期记忆 ant colony algorithm different speed ant colony adaptive radius adjustrnent short memory
  • 相关文献

参考文献10

二级参考文献46

  • 1段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:211
  • 2刘波.一种利用信息熵的群体智能聚类算法[J].计算机工程与应用,2004,40(35):180-182. 被引量:9
  • 3贾利民,李平,聂阿新.新一代的铁路运输系统——铁路智能运输系统[J].交通运输工程与信息学报,2003,1(1):81-86. 被引量:6
  • 4Bilchev G,Parmee I C.Searching heavily contrained design spaces[C]. In:Proc Of 22^nd Int Conf Computer Aided Design'95,Yelta:Ukraine, 1995 : 230-235.
  • 5Colomi A,Dorigo M,Maniezzo V.Distributed optimization by ant colonies[C].In:Proc of 1^sl European conf Artificial Life.
  • 6Ramos V, Merelo J J. Self-organized stigmergic document maps: environment as a mechanism for context learning [A]. In: Alba E, Herrera F, Merelo J J, et al. , ed.AEB' 2002 - 1st Spanish conference on evolutionary and bioinspired algorithms[C]. Merida, 2002. 284-293.
  • 7Yang Y, Kamel M. Clustering ensemble using swarm intelligence[A]. In: IEEE swarm intelligence symposium [C]. Piscataway, NJ: IEEE service center, 2003. 65-71.
  • 8Wu B,Shi Z. A clustering algorithm based on swarm intelligence[A]. In: Proceedings IEEE international conferences on info-tech & info-net proceeding[C]. Beijing,2001. 58-66.
  • 9Strehl A, Ghosh J. Cluster ensembles - a knowledge reuse framework for combining partitionings[A]. In: Proceedings of Artificial Intelligence[C]. Edmonton: AAAI/MIT Press, 2002. 93-98.
  • 10Ayad H, Kamel M. Topic discovery from text using aggregation of different clustering methods[A]. In: Cohen R,Spencer B ed. Advances in artificial intelligence: 15th conference of the Canadian society for computational studies of intelligence[C]. Calgary, 2002. 161-175.

共引文献133

同被引文献40

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部