摘要
为了解决大规模有资源约束的项目调度问题,提出一种串行分解和并行分解相结合的项目逐层分解方法,以便克服精确算法求解时间不可接受,而启发式算法解的质量较差的问题。根据该分解方法特点,提出基于采样选择的启发式协调方法,以及基于分枝定界方法的精确底层调度的子项目协调优化算法,并通过仿真分析了关键参数的选取。仿真结果表明,该算法解的平均质量明显优于相关启发式算法,并且求解时间能够满足工程上的要求,能够有效地提高大规模项目调度问题的求解质量,具有实用价值。
Exact algorithms for large-scale resource constrained project schedules require excessive computing times while the solution quality of heuristics algorithms are not good enough. A project decomposition method with intelligent optimization was developed by combining serial and parallel decomposition methods. The optimization algorithm was the project coordination method based on sampling selection with sub-projects optimized by a bound algorithm. The effect of key parameters on the solution quality and time were analyzed for various simulated scenarios. The simulations show that the algorithm provides a better average quality of solutions than other heuristic algorithms.
出处
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2009年第1期153-156,共4页
Journal of Tsinghua University(Science and Technology)
基金
国家"九七三"基础研究资助项目(2002CB312202)
关键词
大规模项目调度
问题分解
智能优化算法
large-scale project scheduling
problem decomposition
intelligent optimization algorithm