期刊文献+

基于非线性主元子空间的故障模式识别方法 被引量:4

Fault Pattern Recognition Based on Nonlinear Principal Component Subspace
下载PDF
导出
摘要 针对多元统计过程监控中的故障源识别问题,提出一种非线性主元子空间方法识别故障模式。该方法对不同类型的故障数据进行核主元分析,获得描述数据主要变化的非线性主元子空间,以此为基础构造故障模式分类器。考虑到核主元分析的计算复杂性,提出一种基于特征样本的非线性主元子空间算法,使用基于克隆选择原理的免疫算法提取特征样本用于故障模式识别。在Tennessee Eastman过程上的仿真结果说明,非线性子空间方法能够比线性子空间方法更有效的识别故障模式。 To identify fault root cause in multivariate statistical process monitoring, nonlinear principal component subspace method was proposed to recognize fault pattern. Kernel principal component analysis was performed on different fault pattern datasets so that the nonlinear principal component subspace was available to describe data variance. The subspace classifier was constructed to identify fault pattern. In order to reduce the computation complexity, feature samples based nonlinear principal component subspace method was studied. Immune algorithm based on clonal selection principle was applied to compute feature samples, which were used for fault pattern recognition. The simulation results on Tennessee Eastman process show that nonlinear subspace method can identify fault pattern more effectively than linear subspace method.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第2期478-481,共4页 Journal of System Simulation
基金 国家863资助项目(2004AA412050) 山东省自然科学基金(Y2007G49)
关键词 故障识别 非线性子空间 核主元分析 免疫算法 fault recognition nonlinear subspace kernel principal component analysis immune algorithm
  • 相关文献

参考文献16

  • 1Lee J-M, Yoo C K, Choi S W, et al. Nonlinear Process Monitoring using Kernel Principal Component Analysis [J]. Chemical Engineering Science (S0009-2509), 2004, 59(1): 223-234.
  • 2Ku W, Storer R H, Georgakis C. Disturbance Detection and Isolation by Dynamic Principal Component Analysis [J]. Chemometrics and Intelligent Laboratory Systems (SO 169-7439), 1995, 30( 1 ): 179-196.
  • 3Bakshi B R. Multiscale PCA with Application to Multivariate Statistical Process Monitoring [J]. AICHE Journal (S0001-1541), 1998, 44(7): 1596-1609.
  • 4Westerhuis J A, Gurden S P, Smilde A K. Generalized Contribution Plots in Multivariate Statistical Process Monitoring [J]. Chemometrics and Intelligent Laboratory Systems (S0169-7439), 2005, 51(1): 95-114.
  • 5Dunia R, Qin S J, Edgar T F, Mcavoy T J. Identification of Faulty Sensors using Principal Component Analysis [J]. AICHE Journal (S0001-1541), 1996, 42( 10): 2797-2812.
  • 6Chiang L H, E L Russell, R D Braatz. Fault Detection and Diagnosis in Industrial Systems [M]. London, UK: Springer, 2001.
  • 7Kassidas A, Taylor P A, Macgregor J F. Offline Diagnosis of Deterministic Faults in Continuous Dynamic Multivariable Processes using Speech Recognition Methods [J]. Journal of Process Control (S0959-1524), 1998, 8(5-6): 381-393.
  • 8刘青山,卢汉清,马颂德.综述人脸识别中的子空间方法[J].自动化学报,2003,29(6):900-911. 被引量:117
  • 9Krzanowski W J. Between-Groups Comparison of Principal Components [J]. Journal of the American Statistics Association (S0162-1459), 1979, 74(367): 703-707.
  • 10Singhal A, Seborg D E. Pattern Matching in Historical Batch Data using PCA [J]. IEEE Control System Magazine (S0272-1708), 2002, 22(5): 53-63.

二级参考文献74

  • 1Hjelmas E, Low B K. Face detection: A survey. Journal of Computer Vision and Image Understanding, 2001, 83(3) : 236-274.
  • 2Yang M H, Ahuja N, Kriegman D. Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(1): 34-58.
  • 3Toyama K. Prolegomena for robust face tracking. MSR- Tech-Report-98-65, Microsoft, 1998.
  • 4Samal A, lyengar P. Automatic recognition and analysis of human faces and facial expressions: A survey. Pattern recognition, 1992, 25(1) : 65--77.
  • 5Zhao W, Chellappa R, Rosenfeld A, Phillips P J. Face recognition- A literature survey. CS-Tech Report-4167, University of Maryland, 2000.
  • 6Zhou J, Lu C Y, Zhang C S, Li Y D. A survey of face recognition. Acta Electronica Sinica, 2000, 28(4) : 102--106(in Chinese).
  • 7Chellappa R, Wilson C L, Sirohey S. Human and machine recognition of faces: A survey. Proceedings of the IEEE,1995, 83(5): 705--740.
  • 8Bledsoe W. Man-machine facial recognition. Tech Report PRI-22, Panoramic Research Inc., Palo Alto, CA, 1966.
  • 9Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs Fisherfaee: Recognition using class special linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 711-720.
  • 10Zhao W, Chellappa R, Krishnaswamy A. Discriminant analysis of principal components for face recognition. In:Proceedings of International Conference on Automatic Face and Gesture Recognition, Japan: Nara, 1998. 336-341.

共引文献123

同被引文献37

  • 1樊丁,黄健康,石玗,陈剑虹.基于电弧声ARMA双谱分析对熔滴过渡类型SVM模式识别[J].上海交通大学学报,2008,42(S1):42-45. 被引量:8
  • 2陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测[J].自动化学报,2006,32(3):400-410. 被引量:61
  • 3刘毅,王海清.Pensim仿真平台在青霉素发酵过程的应用研究[J].系统仿真学报,2006,18(12):3524-3527. 被引量:44
  • 4刘永辉,鲁力进.谈消费者环境意识与行为的差异[J].商业时代,2007(19):29-30. 被引量:2
  • 5Qin S J. Survey on Data-Driven Industrial Process Monitoring and Diagnosis [J]. Annual Reviews in Control (S1367-5788), 2012, 36(2): 220-234.
  • 6Ge Z Q, S Z H, Gao, F R. Review of Recent Research on Data-Based Process Monitoring [J]. Industrial & Engineering Chemistry Research (S 0888-5885), 2013, 52(10): 3543-3562.
  • 7He Q P, Wang J. Fault Detection Using k-Nearest-Neighbor Rule for Semiconductor Manufacturing Processes [J]. IEEE Transactions on Semiconductor Manufacturing (S0894-6507), 2007, 20(4): 345-354.
  • 8He Q P, Wang J. Large-Scale Semiconductor Process Monitoring Using a Fast Pattern Recognition Based Method [J]. IEEE Transactions on Semiconductor Manufacturing (S0894-6507), 2010, 23(2): 194-200.
  • 9Verdier G,Ferreira A. Adaptive Mahalanobis Distance and k Nearest Neighbor Rule for Fault Detection in Semiconductor Manufacturing [J]. IEEE Transactions on Semiconductor Manufacturing (S0894-6507), 2011, 24(1): 59-68.
  • 10Dong D, McAvoy T J, Nonlinear Principal Component Analysis Based on Principal Curves and Neural Networks [J]. Computers and Chemical Engineering (S0098-1354), 1996, 20(1): 65-78.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部