期刊文献+

直接支持向量回归机 被引量:1

Direct support vector machine for regression
下载PDF
导出
摘要 将超平面偏置项平方加入到最小二乘支持向量回归机(LSSVMR)的目标函数中,提出直接支持向量回归机(DSVMR)。该方法增强了求解问题的凸性,与LSSVMR相比,只需要求解一个与核矩阵类似的对称正定矩阵的逆就可以得到问题的解,再使用Cholesky分解和SMW(Sherman-Morrison-Woodbury)求逆公式,降低了计算复杂度,加快了学习速度,而且逼近能力与LSSVMR近乎相同。最后数值试验表明DSVMR可行且完全具有上述优势。 A direct support vector machine for regression (DSVMR) is obtained when appending the square bias of the hyper-plane into the object function in a least square support vector machine for regression (LSSVMR). Compared with LSSVMR, the DSVMR strengthens the convexity of the problem to be solved and only needs to calculate the inversion of a symmetrical positive definite matrix which is similar to a kernel matrix. The ChoIesky decomposing and the SMW(Sherman- Morrison-Woodbury) formula are employed to reduce the computing amount greatly, accelerates the learning speed and has no weakening approximate ability. Numerical experiments show that the new method is feasible and has the above advantages.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第1期178-181,共4页 Systems Engineering and Electronics
基金 国家自然科学基金资助课题(60574075 60705004)
关键词 支持向量机 直接支持向量机 回归 正定矩阵 support vector maehine direct support vector machine regression positive definite matrix
  • 相关文献

参考文献14

  • 1Vapnik V N. The nature of statistical learning theory[M]. New York: Springer, 1995.
  • 2Drucker H, Burges C J C, Kaufman L. Support vector regression machines[C] // Advances in Neural Information Processing Systems, Cambridge: MIT Press, 1997:155 - 161.
  • 3Tay F E H, Cao L. Application of support vector machines in financial time series forecasting[J]. Omega, 2001, 29 (4) : 309 -317.
  • 4Flake G W, Lawrence S. Efficient SVM regression training with SMO[J]. Machine Learning, 2002, 41(1): 271-290.
  • 5李映,白本督,焦李成.支撑矢量机的分类机理[J].系统工程与电子技术,2001,23(9):25-27. 被引量:10
  • 6周伟达,张莉,焦李成.线性规划支撑矢量机[J].电子学报,2001,29(11):1507-1511. 被引量:15
  • 7Suykens J A K, Vandewalle J. I.east square support vector machine classifiers[J]. Neural Processing Letters, 1999,9:293 - 300.
  • 8Gestel T V, et al. Financial time series prediction using least squares support vector machines within the evidence framework [J]. IEEE Trans on Neural Networks, 2001, 12(4): 809 -821.
  • 9Wei Chun, Chong Jin Ong, Keerthi S S. An improved conjugate gradient scheme to the solution of least squares SVM[J]. IEEE Tansaetion on Neural Network, 2005,16(2) : 498 - 501.
  • 10吴青,刘三阳,张乐友.最小二乘支持向量机的预优共轭梯度法[J].系统工程与电子技术,2007,29(10):1746-1748. 被引量:3

二级参考文献22

  • 1王玲,薄列峰,刘芳,焦李成.最小二乘隐空间支持向量机[J].计算机学报,2005,28(8):1302-1307. 被引量:12
  • 2程云鹏 张凯院 等.矩阵理论[M].西安:西北工业大学出版社,1989..
  • 3[1]Scholkopf B, Burges C, Vapnik V. Extracting Support Data for a GivenTask[C]. Proc. of Ftrst Int. Conf. Knowledge Discovery &Data Mining, CA:.AAAl, 1995: 237~243.
  • 4[2]Vapnik V. The Nature of Statistical Learning Theory[M]. New Yor k:Sringer- Verlag, 1995.
  • 5[3]Burges C J C. ATtrorial on Suppot Vector Machines for Pattem Recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2):1~47.
  • 6[4]Smola A, Scholkopf B. On a Kernel - Based Method for Pattern Recognition, Regression, Approximation and Operator Inversion[ EB]. http://swm. first.gmd. de, 1998.
  • 7[5]Scholkopf B. Comparing Supprt Vectcr MachineswithGaussianKemels to Radial Basis Function Classifiers[J]. IEEE Trans. onn Signal Procesing, 1997,45(11): 2758~2765.
  • 8[6]Scholkopf B, Smola A, Muller K - R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem[M]. Neural Compuaation, 1998, 10: 1299~ 1319.
  • 9Lang K J,Proc 1989 Connectionist Models Summer School,1989年,52页
  • 10程云鹏,矩阵理论,1989年

共引文献25

同被引文献12

  • 1陈爱军,宋执环,李平.基于矢量基学习的最小二乘支持向量机建模[J].控制理论与应用,2007,24(1):1-5. 被引量:21
  • 2Vapnik V N. The nature of statistical theory[M]. New York:Springer Verlag, 1995.
  • 3Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [J]. Neural Processing Letters, 1999,9(3) :293-300.
  • 4Suykens J A K, Vandewalle J. Recurrent least squares support vector machines[J]. IEEE Transactions on Circuits and Systems Ⅰ ,2000,47(7) :1109-1114.
  • 5Suykens J A K, Lukas L, Vandewalle J. Sparse approximation using least squares support vector machines[C]// Proceedings of IEEE International Symposium on Circuits and System. New York, USA : Piscataway, 2000 :757-760.
  • 6Kruif B J, Vries T J A. Pruning error minimization in least squares support vector machines[J]. IEEE Transactions on Neural Networks, 2003,14(3) :696- 702.
  • 7Zeng X Y, Chen X W. SMO-based pruning methods for sparse least squares support vector machines[J]. IEEE Transactions on Neural Networks, 2005,16(6) : 1541- 1546.
  • 8Cauwenberghs G, Poggio T. Incremental and decremental support vector machine learning[C]//Proceedings of Advances in Neural Information Processing Systems 13. Cambridge, MA : MIT Press, 2001,409-415.
  • 9张贤达.矩阵分析与应用[M].北京:清华大学出版社,2005.341-400.
  • 10李瑞莹,康锐.基于神经网络的故障率预测方法[J].航空学报,2008,29(2):357-363. 被引量:55

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部