摘要
The high temperature air combustion(HiTAC) process in gas suspension calcinations(GSC) was studied by using a CFD software FLUENT that can simulate the three-dimensional physical model of GSC with the k-epsilon turbulent viscous model, PDF non-premixed combustion species model, P1 radiation model, thermal and prompt NO pollution model. The simulation vividly describes the distributions of the temperature, velocity and consistency fields. Finally, the optimal operation conditions and igniter configuration of particular fuel combustion are obtained by analyzing and comparing the simulation results. And the emission quantity of NOx, CO and CO2 deduced from computation can play a role as reference. These optimal and estimated values are beneficial to practical operation.
The high temperature air combustion(HiTAC) process in gas suspension calcinations(GSC) was studied by using a CFD software FLUENT that can simulate the three-dimensional physical model of GSC with the k-epsilon turbulent viscous model, PDF non-premixed combustion species model, P1 radiation model, thermal and prompt NO pollution model. The simulation vividly describes the distributions of the temperature, velocity and consistency fields. Finally, the optimal operation conditions and igniter configuration of particular fuel combustion are obtained by analyzing and comparing the simulation results. And the emission quantity of NOx, CO and CO2 deduced from computation can play a role as reference. These optimal and estimated values are beneficial to practical operation.
出处
《中国有色金属学会会刊:英文版》
EI
CSCD
2009年第1期259-266,共8页
Transactions of Nonferrous Metals Society of China
基金
Project (60634020) supported by the National Natural Science Foundation of China
关键词
有色金属
气态悬浮焙烧炉
监控系统
冶金炉
aluminum hydroxide
gas suspension calcinations
high temperature air combustion
numerical simulation
FLUENT software