期刊文献+

ZnGeP_2的多晶合成与单晶生长研究 被引量:5

Polycrystal Synthesis and Single Crystal Growth of ZnGeP_2
下载PDF
导出
摘要 采用富P配料工艺,通过改进的单温区合成法(MSTZM)合成出高纯、单相的ZnGeP2多晶原料。用改进垂直布里奇曼法(MVBM)生长出尺寸为Φ20mm×30mm的ZnGeP2单晶体。经X射线衍射分析、红外光谱分析、ZC36高阻仪测试表明:晶体完整性好,具有黄铜矿结构,晶格常数a=b=0.5463nm,c=1.0709nm。晶体的透光范围为0.65~12.5μm。厚度为2mm的晶片在2~12μm范围内的平均红外透过率达55%以上,电阻率为6×107Ω·cm,计算2.05μm和10.6μm处的吸收系数分别为0.017cm-1和0.21cm-1。 High-purity and single-phase ZnGeP2(ZGP) polycrystal was synthesized by Zn, Ge, and red P elements (99.9999%) according to the stoichiometry of ZnGeP2 with an excess of 0.2% P through a Modified Single-Temperature Zone Method(MSTZM). An integral ZnGeP2 single crystal with size of Φ20mm×30mm was obtained by Modi- fied Vertical Bridgman Method (MVBM). The as-grown crystals were characterized by X-ray diffraction(XRD), ZC36 Megger, Uhraviolet(UV) and Infrared(IR) spectroscopy. XRD analysis indicates ZnGeP2 crystal is ehalcopyrite structure, the lattice constants of a and e are 0.546 3 nm and 1.070 9 nm, respectively. The transparency range of a ZGP wafer with 2 mm thickness is 0.65-12.5 μm, the infrared transmission is above 55% in the spectral region of 2-12 μm. Resistivity of the crystal is about 10^7 cm magnitude. The value of absorption eoefficient(α) at 2.05 μm and 10.6 μm are 0.017 cm^-1 and 0.21 cm^-1, respectively. These results demonstrate that the quality of the as-grown crystal is high enough for applications in infrared nonlinear devices.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2009年第1期99-103,共5页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(No.50672061 50732005) 863计划课题(No.2007AA03Z443)资助项目
关键词 磷锗锌 改进垂直布里奇曼法 晶体生长 红外光谱 ZnGeP2 MVBM crystal growth IR spectroscopy
  • 相关文献

参考文献12

  • 1Das S, Bhar G C, Gangopadahyay S, et al. Appl. Opt., 2003, 42(21):4335-4340
  • 2Andreev Y, Geiko P, Kotsubinskaya E. Proc. of SPIE, 2004,5397:173-180
  • 3SUXu(苏旭),LIUTao(刘涛),ZHANGGang(张刚),et al. Wuji Huaxue Xuebao, 2006, 22(7): 1163- 1169
  • 4Nikogosyan D N. Nonlinear Optical Crystals: A Complete Survey. New York : Springer. 2005.96-106
  • 5Phua P B, Lai K S, Wu R F, et al. Appl. Opt., 1998,38(3): 563-565
  • 6Das S, Ghosh C, Gangopadhyay S. Infrared Phys. Technol., 2007,51:9-12
  • 7Kenneth H F, Fernelius N C, Goldstein J T, et al. Proc. of SPIE, 2005, 5912:591202-1-591202-5
  • 8Allik T H, Chandra S, Rines D M, et al. Opt. Lett., 1997,22 (9):597-599
  • 9Zawilski K T, Schunemann P G, Setzler S D, et al. J. Cryst. Growth, 2008,310:1891-1896
  • 10Verozubova G A, Gribenyukov A I. Crystallography Reports, 2008,53(1):158-163

同被引文献159

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部