期刊文献+

基于证据理论的双传感器决策融合目标检测

Target detection by decision-level fusion of dual-sensor based on evidence theory
下载PDF
导出
摘要 针对单传感器图像目标检测概率相对较低的问题,提出用来自两个传感器的图像分别进行目标检测,并基于加权证据理论将检测结果进行决策级融合。在对同一地区SAR图像和高光谱图像进行决策级融合过程中,各证据的权值确定采取了以传感器信任度决定权值的方法,实现了各传感器之间图像信息最优化互补。实验结果表明,在虚警概率为10-3数量级的条件下,加权融合后的检测概率达到84.51%,比仅用单一高光谱图像和SAR图像进行目标检测时分别提高了11.27%和19.72%;在主观视觉效果上,采取决策级融合后检测效果也更好。 As for the problem that the target detection probability of single sensor image is relatively low, it is proposed that target detection is implemented separately by using images from two sensors, and decision-level fusion of detection results is accomplished based on weighted evidence theory. In the process of decision-level fusion from SAR image within the same district and hyper-spectral image, the weights of evidences are determined by the trust factor of sensors, fmally implemented optimized complementation of image information between sensors. As experiments show, guaranteeing the false alarm conditions in magnitude of 103, the probability of detection reaches 84.51% after weighted image fusion, higher than single hyper-spectral images and SAR images for target detection, increased by 11.27% and 19.72% each; in the subjective visual effects, the detection results after decision-level fusion are also better.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第2期261-264,共4页 Computer Engineering and Design
基金 国家863高技术研究发展计划基金项目(2007AA701511)
关键词 多传感器 目标检测 图像融合 RX检测 CFAR检测 证据理论 multi-sensor target detection image fusion RX detection CFAR detection evidence theory
  • 相关文献

参考文献7

  • 1Ren C Luo,Chih-Chen Yih,Kuo Lan Su.Multisensor fusion and integration: Approaches,applications,and future reaearch directions [J]. IEEE Sensors Journal,2002(2): 107-119.
  • 2Manish Kumar, Devendra P Garg,Randy A Zachery.A method for judicious fusion of inconsistent multiple sensor data[J].IEEE Sensors Journal,2007(5):723 -733.
  • 3徐从富,耿卫东,潘云鹤.面向数据融合的DS方法综述[J].电子学报,2001,29(3):393-396. 被引量:77
  • 4Novak L M,Halversen S D,Owirka G J,et al.Effects of polarization and resolution on SAR ATR[J].IEEE Trans on AES,1997,33 (1):102-115.
  • 5Reed I S,Yu X.Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J].IEEE Trans Acoustics,Speech, Signal Processing, 1990,38 (10): 1760-1770.
  • 6惠增宏.基于加权D-S证据理论的分布式多传感器目标识别[J].计算机应用,2007,27(1):56-57. 被引量:14
  • 7Wu Huadong,Mel Siegel,Sevim Ablay.Sensor fusion using dempster-shafer theory ii: static weighting and Kalman filter-like dynamic weighting[J].IEEE Instrumentation and Measurement Technology Conference,2002:7-12.

二级参考文献15

共引文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部