期刊文献+

BP神经网络模型在空气质量级别评价中的应用 被引量:22

Application of BP neural network model on air quality rank appraisal
下载PDF
导出
摘要 为了方便广大市民及时准确的了解空气质量状况,利用环境评价问题建立多层前向神经网络数学模型,以上海市2007年12月份的空气质量状况指标作为训练样本,对网络模型进行训练,使模型不断学习样本中存在的内在模式,并将训练好的网络用于空气质量状况评价。将评价结果与实际结果进行分析比较后发现,该网络模型具有较高的评价精度、较低的误差率。采用Matlab软件进行实验,评价准确度达95.83%。 In order to facilitate the general residential to understand air quality condition promptly and accurately, using environment appraisal question to establish multi-layer front neural network mathematical model, taking air qualitative index of Shanghai on December, 2007 as the training sample, the training to the network is carded on, the model unceasingly to study the intrinsic pattern which exists in the sample, and the trained network in the air quality appraisal is used. After carrying on the analysis comparison between evaluating the result and the actual result, we discover that, this network model has the higher appraisal precision, the lower error coefficient, the Matlab software is also used to carry on the experiment, the appraisal accuracy reaches 95.83%.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第2期392-394,共3页 Computer Engineering and Design
基金 山东省自然科学基金重大项目(Z2004G02)
关键词 空气质量评价 BP神经网络 非线性 拓扑结构 误差曲线 数据拟合 阈值 air quality appraisal BP neural network non-linearity topology structure curve of error data fitting threshold value
  • 相关文献

参考文献9

二级参考文献53

  • 1Jiao Lichengl,Liu Fang & Xie Qin(National Lab. for Radar Signal Processing and Center for Neural Networks,Xidian University, Xian 710071, P.R.China).Volterra Feedforward Neural Networks:Theory and Algorithms[J].Journal of Systems Engineering and Electronics,1996,7(4):1-12. 被引量:3
  • 2雷鸣,吴雅,杨叔子.非线性时间序列建模与预测的神经网络法[J].华中理工大学学报,1993,21(1):47-52. 被引量:20
  • 3刘金国.大视场光电测量系统的精密几何标定和畸变校正的研究[J].光学精密工程,1994,2(4):109-120. 被引量:22
  • 4铜川市环保局.铜川市环境监测质量简报,2003.
  • 5铜川市环保局.铜川市环境监测质量简报,2004.
  • 6铜川市环保局.铜川市环境监测质量简报,2005.
  • 7[1]wu Youshou, Zhao Mingsheng, The neural model with tunable activation function and its supervised learning and application, Science in China (in Chinese), Ser. E, 2001, 31(3): 263-272.
  • 8[2]Segee, B. E., Using spectral techniques for improved performance in ANN, Proc IEEE, 1993, 500-505.
  • 9[3]Lee, S., Kil, R. M., A Gaussian potential function network with hierarchically self-organizing learning, Neural Network, 1991,4: 207-224.
  • 10[4]Stork, D. G., Allen, J. D. et al., How to solve the N-bit parity problem with two hidden units, Neural Networks,1992, 5: 923-926.

共引文献123

同被引文献161

引证文献22

二级引证文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部