摘要
讨论Hilbert空间上半线性随机发展方程dY的稳定性。为此引进了适度解的正则性和常返性等概念,利用Liapunov直接法得到了此类随机发展方程的随机渐近稳定性、随机指教稳定性、p-稳定性和几乎必然指数稳定性的充分性判据。这些结果不但推广了有限维情形的工作,同时也发展了A.Ichikawa的工作。
Discusses the stability of semilinar stochastic evolution equations on Hilbert Space dY(t) = [AY(t) +f(Y(t))]dt + G(Y(t))d (t). At first, in order to Study Stochatic asymp- totically stability, some concepts for mild-solution, , and the sufficiently conditions for this stability are obtained. Secondly, some new concepts of stability are defined. The main results make the finite dimensions extention and Ichika' results development.
出处
《北京科技大学学报》
EI
CAS
CSCD
北大核心
1998年第1期93-98,共6页
Journal of University of Science and Technology Beijing
基金
国家自垛科学基金
关键词
半线性
随机发展方程
稳定性
希尔伯特空间
semilinear stochastic evolution equation
mild solution
Lyapunov method