期刊文献+

C^1自然邻近迦辽金法在偶应力理论中的应用 被引量:3

The application of the C^1 natural neighbor Galerkin method in the couple-stress elasticity theory
下载PDF
导出
摘要 以non-Sibsonian插值函数作为三次单纯形Bernstein-Bézier的基坐标,构建了C1自然邻近插值函数,该函数具有二次完备性以及对结点函数值和梯度值的插值特性等性质.将C1插值函数应用于Toupin-Mindlin偶应力弹性理论,由于C1形函数的插值特性,偶应力理论迦辽金法可以直接施加本质边界条件,克服了其它无网格法施加本质边界条件的困难.具体算例包括单剪问题和中心圆孔无限大板单轴拉伸问题,数值解与理论解吻合得较好,表明C1自然邻近迦辽金法能够用来分析偶应力理论问题. The C1 interpolant was realized when embedding the nonSibsonian natural neighbor coordinate in the Bernstein-Bézier surface representation of a cubic simplex.It had quadratic completeness,interpolation to nodal function and nodal gradient values,and can be reduced to a cubic polynomial on the boundary of domain.The essential boundary conditions were directly imposed in a Galerkin scheme for the Toupin-Mindlin couple-stress theory because the C1 interpolant had the interpolation property for nodal functions and nodal gradient values.The simple shear problem and infinite plate with circular hole under uniaxial tension were analyzed.The numerical solutions agree well with the analytical solutions,which show that the C1 natural neighbor Galerkin method can analyze the couple-stress elasticity theory.
出处 《山东大学学报(工学版)》 CAS 2008年第6期112-117,126,共7页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(10572077) 山东省博士后创新项目专项基金资助项目(200703070)
关键词 non-Sibsonian自然邻近坐标 Bernstein-Bézier多项式 C1插值函数 偶应力弹性理论 non-Sibsonian natural neighbor coordinates Bernstein-Bézier polynomial C1 interpolant couple stress elasticity theory
  • 相关文献

参考文献9

  • 1FLECK NA, MUKKER GM, ASHBY MF, et al. Strain gradient plasticity: theory and experiment[J]. Acta Metallurgica et Materialia, 1994, 42:475-487.
  • 2STOLKEN JS, EVANS AG. A microbend test method for measuring the plasticity length scale[J]. Acta Metallurgica Materials, 1998, 46:5109-5115.
  • 3LAM DCC, YANG F, CHONG ACM, et al. Experiments and theory in strain gradient elasticity[J]. Journal of the Mechanics and Physics of Solids, 2003, 51 : 1477-1508.
  • 4MINDLIN RD, TIERSTEN HF. Effects of couple-stresses in linear elasticity[J]. Archive for Rational Mechanics and Analysis, 1962, 11:415-448.
  • 5FARIN G. Surfaces over Dirichlet tessellations[J]. Computer Aided Geometric Design, 1990, 7:281-292.
  • 6SUKUMAR N, MORAN B. C1 natural neighbor interpolant for partial differential equations[J]. Numerical Methods for Partial Differential Equations, 1999, 15:417-447.
  • 7SUKUMAR N, MORAN B, SEMENOV AY, et al. Natural neighbor Galerkin methods [ J ]. International Journal for Numerical Methods in Engineering, 2002, 50:1-27.
  • 8PARK SK, GAO XL. Variational formulation of a modified couple stress theory and its application to a simple shear problem[J]. Zeitschrift Fuangewandte Mathematik and Physik, 2007; 59:1-14.
  • 9MINDLIN RD. Influence of couple-stresses on stress concentrations[J]. Experimental Mechanics, 1963, 3:1-7.

同被引文献48

  • 1肖其林,凌中,吴永礼,姚文慧.偶应力问题的非协调元分析[J].中国科学院研究生院学报,2003,20(2):223-231. 被引量:9
  • 2MINDLIN RD. Microstructure in linear elasticity [J]. Archive for Rational Mechanics and Analysis, 1964, 10:51-78.
  • 3SHU JY, KING WE, FLECK NA. Finite elements for materials with strain gradient effects [ J]. International Journal for Numerical Methods in Engineering, 1999, 44(3) : 373-391.
  • 4AMANATIDOU E, ARAVAS N. Mixed finite element formulations of strain gradient elasticity problems[J]. ComputerMethods in Applied Mechanics and Engineering, 2002, 191:1723-1751.
  • 5TANG Z, SHEN S, ATLURI SN. Analysis of materials with strain gradient effects: a meshless local petrov-galerkin (MLPC) approach, with nodal displacements only [ J ]. Computer Modeling in Engineering and Sciences 2003, 4: 177-196.
  • 6FARING. Surfaces over dirichlet tessellations [ J ]. Computer Aided Geometric Design, 1990, 7 : 251-292.
  • 7SUKUMAR N, MORAN B. C^1 natural neighbor interpolant for partial differential equations [J]. Numerical Methods for Partial Differential Equations, 1999, 15: 417-447.
  • 8Mindlin R D, Tiersten H F. Effects of couple-stresses in linear elasticity [J]. Archive for Rational Mechanics and Analysis, 1962, 11: 415--448.
  • 9Mindlin R D. Microstructure in linear elasticity[J]. Archive for Rational Mechanics and Analysis, 1964, 10: 51-78.
  • 10Cosserat E, Cosserat F. Theorie des corps deformables[M]. Paris: Hermann, 1909.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部