期刊文献+

基于数据挖掘的网络业务流分析方法 被引量:1

Network traffic analysis method based on data mining
下载PDF
导出
摘要 为了从业务角度对网络的性能进行评价和优化,提出了一种新的网络业务分析方法——具有时态路径约束的关联规则挖掘分析方法.该方法以网络业务为分析粒度,以与网络业务流相关的时态属性和路径属性为约束条件,对已经积累的反映网络状况的海量历史数据进行挖掘分析.在进行关联规则挖掘时,利用频繁数据项集的性质,通过引入事务标号,在求出候选频繁项集的同时也求出其支持度,避免了为求支持度而进行的扫描数据库运算,极大提高了挖掘的效率和速度.实验结果表明,进行挖掘分析的数据量越大,该方法的性能和效率就越好. In order to evaluate and optimize the network performance from the view of the network traffic, a novel network traffic analysis method called time and path restrained association rules mining (TPRAR) is proposed. This method regards the network traffic as the analysis granularity and analyzes a mass of the historical data reflecting the network status by using data mining. During the course of mining, the time attribute and the path attribute related to the network traffic are regarded as the restraint conditions and the transaction ID is used to get the support of candidate frequent itemsets too while getting candidate frequent itemsets based on the character of frequent itemsets. This avoids scanning the database to get its support and the efficiency and the speed of mining are greatly improved. Experimental results indicate that the more the data are, the better the performance and the efficiency of TPRAR are.
作者 乔欣 李伟
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第A01期118-121,共4页 Journal of Southeast University:Natural Science Edition
关键词 业务流设计 业务流分析 时态路径约束 关联规则挖掘 traffic engineering traffic analysis time and path restrained association rules mining
  • 相关文献

参考文献7

  • 1Terdik G, Gyires T. lntemet traffic modeling with levy flights [C]//Proc of the 7th International Conference on Networking. Los Angelse: IEEE Computer Society, 2008: 468-473.
  • 2Awduche D O, Chiu A, Elwalid A, et al. A framework for Intemet traffic engineering [EB/OL]. (2001-11-01)[2008-07-10]. http://www.ietf.org.
  • 3Ashour M, Tho L. Performance analysis of weighted fair queues with variable service rates [C]//Proc of Intemational Conference on Digital Telecommunications. Los Angelse: IEEE Computer Society, 2006:51-56.
  • 4Ge X, Yu S, Yoon W, et al. A new prediction method of Alpha-stable processes for self-similar traffic [C]//Proc of IEEE Global Telecommunications Conference. Los Angelse: IEEE Computer Society, 2004: 675-679.
  • 5Shawe-Taylor J, De-Bie T, Cristianini N. Data mining, data fusion and information management [J]. IEE Proceedings Intelligent Transport Systems, 2006, 153(3): 221-229.
  • 6李伟,魏恒义.数据挖掘技术在网络业务流设计中的应用[J].计算机工程,2002,28(5):49-50. 被引量:4
  • 7Agrawal R, Srikant R. Fast algorithms for mining association rules [C]//Proc of the 20th International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers, 1994: 487-499.

二级参考文献2

共引文献3

同被引文献8

  • 1Agrawal R,Srikant R.Fast algorithms for mining association rules in large databases[C] //Proceedings of the Twentieth International Conference on Very Large Databases,Santiago,Chile,1994:487-499.
  • 2Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large database[C] //Proceeding of the 1993 ACM-SIGMOD Imernational Conference on Management of Data.New York,USA:ACM Press,1993:207-216.
  • 3Srikant R,Vu Q.Mining association rules with item consnaints[C] //Proc of the Third Int'l Conf on Knowledge Discovery in DataBases and Data Mining.CA,USA:AAAI Press,1997:67-73.
  • 4Ng R T,Lakskmanan V S,Han J,et al.Exploratory mining and pruning optimizatious of constrained association rules[C] //Proc of the 1998 AACM-SIGMOD Int'l Conf on Management of Data.New York,USA:ACM Press,1998:13-24.
  • 5Bayardo R J,Agruwal J R.Constraint-based rule mining in large,dense database[J].Data Mining and Knowledge Discovery,2000,4(2/3):217-240.
  • 6Hadoop.The Apache software foundation[EB/OL].http://hadoop.apache.org/core.
  • 7Clauset A,Newman M E J,Moore C.Finding community structure in very large networks[J].Phys Rev E,2004,70.
  • 8Ravi V T,Agrawal G.Performance issues in parallelizing data-intensive applications on a multi-core clusters[C] //Proceedings of the 9th IEEE/ACM International Symposium on Cluster Computing and the Grid Table of Contents,2009:308-315.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部