期刊文献+

基于信任度的多传感器数据融合及其应用 被引量:33

Multi-sensor data fusion method based on belief degree and its applications
下载PDF
导出
摘要 针对多传感器信息采集系统中的数据不确定性问题,提出了一种基于信任度的多传感器数据融合方法.该方法首先定义一个模糊型指数信任度函数,对两传感器测得数据间的信任程度进行量化处理,并通过信任度矩阵度量各传感器测得数据的综合信任程度,以合理地分配测得数据在融合过程中所占权重,得到数据融合估计的最终表达式,从而实现了多传感器数据的融合.分析土壤含水率的数据融合结果可知,应用所提出方法使融合结果的标准差降低至0.0084,随机干扰下变化幅度仅为0.0027%,不仅达到了比传统方法更高的融合精度,而且具有良好的抗干扰性. Focusing on the uncertainty of data in information gathering system, a multi-sensor data fusion method based on belief degree is proposed, in which a fuzzy-index belief degree function is defined to quantify the belief degree between data measured by two sensors, and the synthesis belief degree of data from various sensors is measured through a belief degree matrix. The weights of data measured in the fusion process are reasonably assigned, so that the final expression of data fusion and estimation is obtained, thus the data fusion of multi-sensor is realized. Through applying the proposed method to the real-world dataset of data fusion in soil water content, it is demonstrated that this method, which can make the standard deviation of fusion results drop to 0.0084 and the varying scope with random disturbance to 0.0027%, not only can reach higher fusion precision than traditional methods, but also has excellent restraint ability against disturbance.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第A01期253-257,共5页 Journal of Southeast University:Natural Science Edition
基金 国家高技术研究发展计划(863计划)资助项目(2006AA10A301,2006AA10Z335)
关键词 多传感器 数据融合 信任度函数 multi-sensor data fusion belief degree function
  • 相关文献

参考文献7

  • 1Moon Hyeong-Soon, Kim Yong Back, Beattid Robert J. Multi-sensor data fusion for improving performance and reliability of fully automatic welding system[J]. International Journal of Advance Manufacture Technology, 2006, 28(3-4): 286-293.
  • 2Wang Jau-Hsiung, Gao Yang. Multi-sensor data fusion for land vehicle attitude estimation using fuzzy expert system[J]. Data Science Journal, 2005, 28(11): 127-139.
  • 3Dong Wen, Pentland Alex. Multi-sensor data fusion using the influence model[C]//Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks. Boston MA, USA, 2006: 72-75.
  • 4郭徽东,章新华,宋元,陆强强.多传感器异步数据融合算法[J].电子与信息学报,2006,28(9):1546-1549. 被引量:12
  • 5刘建书,李人厚,常宏.基于相关性函数和最小二乘的多传感器数据融合[J].控制与决策,2006,21(6):714-716. 被引量:42
  • 6胡振涛,刘先省.基于相对距离的一种多传感器数据融合方法[J].系统工程与电子技术,2006,28(2):196-198. 被引量:28
  • 7史荣昌.矩阵分析[M].2版.北京:北京理工大学出版社,2006.

二级参考文献24

  • 1陈福增.多传感器数据融合的数学方法[J].数学的实践与认识,1995,25(2):11-16. 被引量:76
  • 2钱同惠 沈其聪等译.模糊逻辑及其工程应用[M].电子工业出版社,2001..
  • 3Lou R C,Lin M,Scherp P S.Dynamic multi-sensor data fusion system for intelligent robots[J].IEEE Journal of Robotics and Automation,1988,4(4):386-486.
  • 4Fukunaga K,Flick T E.A Test of the Gaussian-ness of a Data Set Using Clustering[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1986,8(2):240-247.
  • 5John M Richardson,Kenneth A March.Fusion of Multisensor Data[J].The Int J of Robotics Research,1988,7(6):78-96.
  • 6Alouani A T, Rice T R. On optimal synchronous and asynchronous track fusion [J], Optical Engineering. 1998, 37(2):427-433.
  • 7Alouani A T, Rice T R. On optimal asynchronous track fusion [S].Adelaide Proc.lst IEEE Australian Symp on Data Fusion, 1996:147-152.
  • 8Blair W D, Alouani All T, B Mcdole S, et al.. Least-squares approach to asynchronous data fusion [A]. SPIE Vo1.1697 Acquistion, tracking, and pointing VI ,1992: 130-141
  • 9邓自立、最优滤波理论及其应用[M].哈尔滨:哈尔滨工业大学出版社,2000,第7章
  • 10Zhu Yunmin, You Zhisheng, Li X R, et al.. The optimality for the distributed Kalman filtering fusion with feedback [J]. Automatica,2001(37): 1489-1493.

共引文献72

同被引文献242

引证文献33

二级引证文献133

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部