期刊文献+

基于小增益定理的非线性系统的自适应动态面控制 被引量:1

Adaptive dynamic surface control of nonlinear systems via small gain theorem
下载PDF
导出
摘要 针对一类具有未知死区的严格反馈不确定非线性系统,基于输入状态稳定理论和小增益定理,利用T-S模糊系统的逼近能力,提出一种自适应模糊控制方案.该方案取消了死区模型参数上下界已知的假设和虚拟控制增益要求可微的假设;利用动态面控制技术,将一阶滤波器引入后推设计中避免了传统后推方法中对虚拟控制反复求导而导致的计算复杂问题.通过构造2个耦合的子系统满足输入状态稳定条件,利用小增益定理分析证明闭环系统半全局一致终结有界,且选取适当的设计常数,跟踪误差可收敛到零的一个小邻域内. Based on input-to-state stability (ISS) and small gain theorem, an adaptive fuzzy control scheme is proposed for a class of strict-feedback uncertain nonlinear systems with unknown deadzone by use of the approximation capability of Takagi-Sugeno type fuzzy systems. The approach does not require a priori knowledge of the upper bound and lower bound of dead zone model parameters, and it removes the assumption of the derivative of virtual control gain functions to be known. By using dynamic surface control and introducing first order filter, the explosion of complexity caused by repeated differentiations of virtual control in traditional backstepping design is avoided. By constructing two interconnected subsystems satisfying ISS condition, the closed-loop control system is proven to be semi-globally uniformly ultimately bounded using small gain theorem, and the output tracking error converges to a neighborhood of zero by choosing appropriate parameters.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第A02期145-149,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(60774017 60874045)
关键词 自适应控制 动态面控制 严格反馈非线性系统 小增益定理 死区模型 adaptive control dynamic surface control strict-feedback nonlinear system small gain theorem dead zone
  • 相关文献

参考文献9

  • 1Kanellakopoulos I, Kokotovic P V, Morse A S. Systematic design of adaptive controllers for feedback linearizable systems[J]. IEEE Trans on Automatic Control, 1991, 36( 11 ) : 1241 - 1253.
  • 2Ge S S, Wang C. Direct adaptive NN control of a class of nonlinear systems [ J ]. IEEE Trans on Neural Networks, 2002, 13(1) : 214-221.
  • 3Zhang T P, Ge S S. Robust adaptive neural control of SISO nonlinear systems with unknown dead-zone and completely unknown control gain [ C ]//IEEE International Symposium on Intelligent Control. Munich, Germany, 2006 : 88 - 93.
  • 4Zhang T P, Ge S S. Direct adaptive NN control of nonlinear systems in strict-feedback form using dynamic surface control [ C ]//IEEE International Symposium on Intelligent Control. Singapore, 2007 : 315 - 320.
  • 5Sontag E D. Smooth stabilization implies coprime factorization [ J]. IEEE Trans on Automatic Control, 1989, 34(4) : 435 -443.
  • 6Jiang Z P, Teel A R, Praly L. Small-gain theorem for ISS systems and applications [ J ]. Math Control Signals Systems, 1994, 7 : 95 - 120.
  • 7Jiang Z P, Mareels Iven M Y. A small-gain control method for nonlinear cascaded systems with dynamic uncertainties [ J]. IEEE Trans on Automatic Control, 1997, 42( 3 ) : 292 -308.
  • 8Yang Y S, Zhou C J. Robust adaptive fuzzy tracking control for a class of perturbed strict feedback nonlinear systems via small-gain approach [ J]. Information Sciences, 2005, 170(2):211- 234.
  • 9Zhang T P, Ge S S. Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zone and gain signs [J]. Automatica, 2007, 43(6) : 1021 -1033.

同被引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部