摘要
为研究转子系统在一定的外激励下的特性,使得研究与实际状况更加吻合,采用Jeffcott转子弹性支承模型,建立飞机处于水平盘旋状态下弹性支承转子系统的运动微分方程.运用Runge-Kutta数值法研究了飞机水平盘旋下处于一定角速度的刚性和弹性不同支承情况下的瞬态响应,并对仿真结果进行对比分析.结果表明,由于弹性支承使其转轴刚度降低,其临界转速随之降低;处于同一角速度下的弹性支承比刚性支承进入稳定振动的时间长,比刚性支承振动幅度大;弹性支承和刚性支承在同样的情况下转动都会产生稳定的周期解;因此可以通过对转子系统支承刚度的适当调节,可以达到优化系统性能的目的.
The characteristics of the rotor system on exerted force is studied to observe the actual situation. With the elastic support Jeffcott rotor model, differential equation is built in a state of aircraft circling elastic supported rotor system. The transient response of the rotor system with rigid and elastic support at a given angular velocity in a aircarft of horizontal circling is studied by Runge-Kutta numerical method,and analyzed by similation. The results show that, due to its flexible support shaft to reduce the stiffness, so that critical speed decreases. At the same angular velocity of elastic support, the time to the stability of vibration will be longer and the vibration rate will be larger. But under the same rotation, whether elastic support or rigid support will produce a stable periodic solution. Therefore, by supporting rigidity of the rotor system, the appropriate adjustments to optimize system performance can be achieved.
出处
《西安工业大学学报》
CAS
2008年第6期589-593,共5页
Journal of Xi’an Technological University
基金
陕西省教育厅自然科学计划基金项目(06JK271)
关键词
弹性转子
水平盘旋
临界转速
周期解
elastic rotor system
horizontal circling
critical speed
periodic solution