期刊文献+

改进SIFT特征描述符在影像匹配中的应用研究 被引量:7

The Image Matching Method Based on the Improved SIFT Descriptor
下载PDF
导出
摘要 由于成像条件变化造成的遥感图像之间的几何形变和灰度差异给影像匹配带来了困难,深入研究了SIFT特征描述符的生成方法,针对SIFT特征维数过高的问题进行改进,利用特征点邻域的圆形区域构造新的描述符,增强了描述符自身的抗旋转性,并降低了特征描述符的维数。实验表明,改进的特征描述符是可行有效的,在遥感影像目标匹配中取得满意的实验结果。 Geometry deformation and grayscale distortion between remote sensing images caused by differences of imaging conditions are big problems in image matching. A deep research on SIFT descriptor creation method was made in this paper. Aiming at the problem of SIFT high-dimension descriptor, a new SIFT descriptor creation method was proposed, which took advantage of a circle region around the feature point to create the descriptor, and it could enhance rotation-resistance and reduce descriptor dimension. The experiments proved that the improved descriptor was effective and could get satisfied results in object matching of remote sensing images.
出处 《测绘科学技术学报》 北大核心 2008年第6期440-442,447,共4页 Journal of Geomatics Science and Technology
基金 国家自然科学基金资助(40871213)
关键词 遥感图像 特征点 SIFT 目标匹配 remote sensing images feature point SIFT object matching
  • 相关文献

参考文献5

  • 1[1]LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal on Computer Vision,2004,60(2):91-110.
  • 2[2]MIKOLAJCZY K,SCHMID C.A Performance Evaluation of Local Descriptors[R].CVPR,2003:257-264.
  • 3[3]LINDEBERG T.Automatic Scale Selection as a Pre-Processing Stage for Interpreting the Visual World[C]∥Proc Fundamental Structural Properties in Image and Pattern Analysis,1999:9-23.
  • 4王敬东,徐亦斌,沈春林.一种新的任意角度旋转的景象匹配方法[J].南京航空航天大学学报,2005,37(1):6-10. 被引量:14
  • 5孙坚伟,王汝笠.改进的MOPs图像匹配算法[J].科学技术与工程,2006,6(21):3439-3441. 被引量:4

二级参考文献10

  • 1[2]Harris C,Stephens M.A combined comer and edge detector.In:Alvey Vision Conference.1988:147-151
  • 2[3]Fischler,M A.Bolles R,C.Random sample consensus:A paradigm for model fitting with application to image analysis and automated cartography.Communications of the ACM,1981 ;24(6):381-395
  • 3Sim D G,Kim H K,Oh D I. Translation, scale, and rotation invariant texture descriptor for texturebased image retrieval[J]. IEEE Int Conf Image Process, 2000,3:742-745.
  • 4Hayley G M,Manjunath B S. Rotation invariant texture classification using a complete space-frequency model[J], IEEE Transactions on Image Processing,1999,8(2):255-269.
  • 5Ullah F, Kaneko S. Using orientation codes for rotation-invariant template matching [J]. Pattern Recognition, 2004,37 (2) : 201- 209.
  • 6Bijita B, Amit K, Achintya K M. Image matching with fuzzy moment descriptors[J]. Engineering Applications of Artificial Intelligence, 2001,14 ( 1 ) : 43-49.
  • 7Jeon B H, Lee S U, Lee K M. Rotation invariant face detection using a model-based clustering algorithm [J]. IEEE Int Conf Multimedia and Expo,2000,2: 1149- 1152.
  • 8Pang S N, Kim H C, Kim D, et al. Prediction of the suitability for image-matching based on self-similarity of vision contents[J]. Image and Vision Computing, 2004,22(5) : 355-365.
  • 9Sun Changming. Fast algorithm for local statistics calculation for N-dimensional images[J]. Real-Time Imaging, 2001,7(6) :519-527.
  • 10Brown M Z, Burschka D, Hager G D. Advances in computational stereo[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(8) : 993- 1008.

共引文献15

同被引文献44

  • 1胡海峰,侯晓微.一种自动检测棋盘角点的新算法[J].计算机工程,2004,30(14):19-21. 被引量:9
  • 2徐建斌,洪文,吴一戎.基于遗传算法的遥感影像匹配定位的研究[J].测试技术学报,2004,18(4):351-354. 被引量:8
  • 3梁志敏,高洪明,王志江,吴林.摄像机标定中亚像素级角点检测算法[J].焊接学报,2006,27(2):102-104. 被引量:42
  • 4CUI Su-xia,WANG Yong-hui,FOWLER J E. Mesh-based motion estimation and compensation in the wavelet domain using a redundant transform[ C]//Proc of IEEE International Conference on Image Pro- cessing. 2002 : 693 - 696.
  • 5LOWE G D. Distinctive image features from scaleinvariant key points [ J ]. I ntemational Journal of Computer Vision, 2004,60 (2) : 91- 110.
  • 6高超,张鑫,王云丽,王晖.一种基于SIFT特征的航拍图像序列自动拼接方法[J].计算机应用,2007,27(11):2789-2792. 被引量:36
  • 7LOWE D G.Distinctive Image Features from Scale-Invariant Keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 8BAY H,TUYTELAARS T,VAN GOOL L.SURF:Speeded up Robust Features[C]∥ECCV.Berlin,2006:404-417.
  • 9BENTLEY J L.Multidimensional Binary Search Trees Used for Associative Searching[J].Communications of the ACM,1975,18(9):509-517.
  • 10KEVIN BEYER,JONATHAN GOLDSTEIN,RAGHU RAMAKRISHNAN,et al.When is“Nearest Neighbor”Meaningful?[C]∥Database Theory—ICDT’99.Jerusalem,Israel,1999,1540:217-235.

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部