期刊文献+

基于变精度粗糙信息熵的特征约简算法 被引量:9

Algorithm of feature reduction based on variable precision rough information entropy
原文传递
导出
摘要 为解决传统粗糙集不确定度量存在的局限,提出将变精度粗糙信息熵作为度量标准.该度量标准不仅具有变精度粗糙集良好的抗噪声干扰性能,而且具有基于信息理论的粗糙信息熵更全面反映系统不确定性的能力.给出了基于变精度粗糙信息熵的特征约简算法,实验结果表明该算法具有良好的运行效果. To solve the limitation of uncertainty measure in classical rough set, a measure criterion based on variable precision rough information entropy is proposed. The new criterion has a good tolerance to noise the same as variable precision rough set. At the same time, it has the same power to represent uncertainty as information theory based rough information entropy. An algorithm of feature reduction based on variable precision rough information entropy is presented. Experiments results show that the algorithm yields satisfying reduction results.
出处 《控制与决策》 EI CSCD 北大核心 2009年第2期297-300,304,共5页 Control and Decision
关键词 变精度粗糙集 信息熵 约筒 Variable precision rough set Information entropy Reduction
  • 相关文献

参考文献7

  • 1Pawlak Z. Rough sets theory and its applications to data analysis[J]. Cybernetics and Systems, 1998, 29(7): 661-688.
  • 2Ziarko W. Variable precision rough set model[J]. J of Computer and System Sciences, 1993, 46(1): 39-59.
  • 3Wang G Y. Rough reduction in algebra view and information view[J]. Int J of Intelligent System, 2003, 18(6): 679-688.
  • 4Duntsch I, Gediga G. Uncertainty measures of rough set prediction[J]. Artificial Intelligence, 1998, 106 (1) : 109-137.
  • 5苗夺谦,王珏.粗糙集理论中概念与运算的信息表示[J].软件学报,1999,10(2):113-116. 被引量:250
  • 6程昳.多元粗糙模糊回归预测[J].四川师范大学学报(自然科学版),2003,26(4):335-337. 被引量:69
  • 7Newman D J, Hettich S, Blake C L. UCI Repository of machine learning databases [DB/OL]. (1998-03-20). http://www.its. uci.edu/-mlearn/MLRepository. html. 1998.

二级参考文献9

共引文献316

同被引文献126

引证文献9

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部