摘要
为了提高图像角点检测的准确度和降低噪声对检测效果的影响,将多尺度思想和模糊理论引入到角点检测过程中,在建立了像素点属于角点的隶属度函数的基础上提出一种多尺度模糊加权角点检测新算法.首先将原始图像使用高斯核函数进行变换生成一组响应图像,并将其进行加权叠加得到原始图像的平均角点响应值;再选取合适的阈值进行相关处理得到最终的角点.实验结果表明,该算法不但抗噪性能较好,而且提取出来的角点也较准确.
In order to improve the detection accuracy of image corners and reduce the noise influence for detection performance, a multi-scale fuzzy weighted corner detection algorithm is proposed after building the membership function which determines whether pixel belongs to corner in this paper. The corner detection algorithm combines the idea of multi-scale and fuzzy theory. Firstly, the original image is transformed by using Gauss kernel function and a group of responsive images are got. The responsive images are superposed and weighed and the average corner responsive datas are got. Then the final corners are got after correlative processed by using selected appropriate threshold value. Experimental results show that the proposed method can not only resist noise effectively, but also detect corners successfully.
出处
《控制与决策》
EI
CSCD
北大核心
2009年第2期305-308,312,共5页
Control and Decision
基金
2006年教育部新世纪优秀人才计划项目(NCET20620487)
国家自然科学基金项目(60472060,60572034)
江苏省自然科学基金项目(BK2006081)
江南大学创新团队建设计划项目(JNIRT0702)
关键词
角点
角点检测
多尺度
模糊理论
Corners
Corner detection
Multi-scale
Fuzzy theory