期刊文献+

Classification of extremely red objects in the Hubble Ultra Deep Field

Classification of extremely red objects in the Hubble Ultra Deep Field
下载PDF
导出
摘要 We present a quantitative study of the classification of Extremely Red Objects (EROs). The analysis is based on the multi-band spatial- and ground-based observations (HST/ACS-BViz, HST/NICMOS-JH, VLT-JHK) in the Hubble Ultra Deep Field (UDF). Over a total sky area of 5.50 arcmin2 in the UDF, we select 24 EROs with the color criterion (i - K)vega 〉 3.9, corresponding to (I - K)vega 〉 ~4.0, down to Kvega = 22. We develop four methods to classify EROs into Old passively evolving Galaxies (OGs) and Dusty star-forming Galaxies (DGs), including (i - K) vs. (J - K) color diagram, spectral energy distribution fitting method, Spitzer MIPS 24 um image matching, and nonparametric measure of galaxy morphology, and found that the classification results from these methods agree well. Using these four classification methods, we classify our EROs sample into 60Gs and 8 DGs to KVega 〈 20.5, and 80Gs and 16 DGs to KVega 〈 22, respectively. The fraction of DGs increases from 8/14 at KVega 〈 20.5 to 16/24 at KVega 〈 22. TO study the morphology of galaxies with its wavelength, we measure the central concentration and the Gini coefficient for the 24 EROs in our sample in HST/ACS-i, z and HST/NICMOS-J, H bands. We find that the morphological parameters of galaxies in our sample depend on the wavelength of observation, which suggests that caution is necessary when comparing single wavelength band images of galaxies at a variety of redshifts. We present a quantitative study of the classification of Extremely Red Objects (EROs). The analysis is based on the multi-band spatial- and ground-based observations (HST/ACS-BViz, HST/NICMOS-JH, VLT-JHK) in the Hubble Ultra Deep Field (UDF). Over a total sky area of 5.50 arcmin2 in the UDF, we select 24 EROs with the color criterion (i - K)vega 〉 3.9, corresponding to (I - K)vega 〉 ~4.0, down to Kvega = 22. We develop four methods to classify EROs into Old passively evolving Galaxies (OGs) and Dusty star-forming Galaxies (DGs), including (i - K) vs. (J - K) color diagram, spectral energy distribution fitting method, Spitzer MIPS 24 um image matching, and nonparametric measure of galaxy morphology, and found that the classification results from these methods agree well. Using these four classification methods, we classify our EROs sample into 60Gs and 8 DGs to KVega 〈 20.5, and 80Gs and 16 DGs to KVega 〈 22, respectively. The fraction of DGs increases from 8/14 at KVega 〈 20.5 to 16/24 at KVega 〈 22. TO study the morphology of galaxies with its wavelength, we measure the central concentration and the Gini coefficient for the 24 EROs in our sample in HST/ACS-i, z and HST/NICMOS-J, H bands. We find that the morphological parameters of galaxies in our sample depend on the wavelength of observation, which suggests that caution is necessary when comparing single wavelength band images of galaxies at a variety of redshifts.
出处 《Chinese Journal of Astronomy and Astrophysics》 CSCD 2009年第1期59-72,共14页 中国天文和天体物理学报(英文版)
基金 supported by the National Natural Science Foundation of China (NSFC, Nos. 10573014, 10633020 and 10873012) the Knowledge InnovationProgram of the Chinese Academy of Science (No. KJCX2-YW-T05) National Basic ResearchProgram of China (973 Program) (No. 2007CB815404).
关键词 GALAXIES evolution - galaxies fundamental parameters - galaxies highredshift - cosmology OBSERVATIONS galaxies evolution - galaxies fundamental parameters - galaxies highredshift - cosmology observations
  • 相关文献

参考文献52

  • 1Abraham, R. G., Tanvir, N. R., Santiago, B. X., et al. 1996, MNRAS, 279, L47
  • 2Abraham, R. G, van den Bergh, S., & Nair, P. 2003, ApJ, 588, 218
  • 3Beckwith, S. V. W, Stiavelli, M., Koekemoer, A. M., et al. 2006, AJ, 132, 1729
  • 4Bershady, M. A., Jangren, A., & Conselice, C. J. 2000, AJ, 119, 2645
  • 5Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
  • 6Bolzonella, M., Miralles, J.-M., & Pello, R. 2000, A&A, 363, 476
  • 7Broadhurst, T. J., Ellis, R. S., & Glazebrook, K. 1992, Nature, 335, 55
  • 8Brown, M. J. I., Jannuzi, B. T., Dey, A., et al. 2005, ApJ, 621, 41
  • 9Capak, P., Abraham, R. G., Ellis, R. S., et al. 2007, ApJS, 172, 284
  • 10Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, ApJ, 533,682

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部