期刊文献+

载bFGF基因腺相关病毒与骨支架材料复合的电镜观察

Electron microscope observations of different scaffold materials loading with rAAV2-bFGF
原文传递
导出
摘要 目的:探讨载bFGF基因的腺相关病毒(rAAV2-bFGF)与不同骨支架材料的复合情况,为颅颌面骨基因治疗提供实验依据。方法:验证腺相关病毒是否携带目的基因。在真空情况下将载bFGF基因的腺相关病毒分别与聚D,L-乳酸/羟基磷灰石(PDLLA/HA)和无机牛骨(Bio-Oss)两种支架材料充分混匀,4℃过夜,在透射电镜和扫描电镜下观察载bFGF基因的腺相关病毒与支架材料的复合情况。结果:物理滴度为2.5×1011v.g./ml的rAAV2-bFGFPCR产物鉴定结果正确,能够满足进一步实验的要求。扫描电镜观察载bFGF基因的腺相关病毒在PDLLA/HA和Bio-Oss两种材料表面均有分布、黏附。透射电镜可见载bFGF基因的腺相关病毒渗透入PDLLA/HA及Bio-Oss两种材料中。结论:载bFGF基因的腺相关病毒在PDLLA/HA和Bio-Oss中均有黏附及渗透,研究PDLLA/HA和Bio-Oss材料的自身特点,综合分析认为PDLLA/HA和Bio-Oss均可作为下一步基因治疗中病毒载体的支架材料。 Objective: To evaluate the effect of different scaffold materials loading with the recombinant adeno-associated virus-mediated basic fibroblast growth factor (rAAV2-bFGF). This may provide the basis for further craniofacial gene therapy. Method: .To identify the expression of the bFGF gene in the recombinant virus. The virus was misced bene with PDLLA / HA or Bio-Oss in vacuum, and cultured overnight in 4℃. Then the compounds were examined the combination with transmission electron microscope and scanning electron microscope. Result: The bFGF cDNA sequence was construced successfully into the recombinant virus. The physical titer of the virus was 2.5× 10^11 v.g. / mhwhich is sufficient for further experiment. In TEM and SEM observation, both PDLLA / HA and Bio-Oss were combined with rAAV2-bFGF significantly. Conclusion:This study demonstrate that both PDLLA / HA and Bio-Oss can be ulitized as scaffold materials for further craniofacial gene therapy.
出处 《临床口腔医学杂志》 2008年第12期733-735,共3页 Journal of Clinical Stomatology
关键词 重组腺相关病毒 骨支架材料 基因治疗 rAAV2 scaffold materials gene therapy
  • 相关文献

参考文献1

二级参考文献9

  • 1Jacobsen S,Fritz H G,Degee P.New developments on the ring opening polymerisation of polylactide[J].Industrial Crops and Products,2000,11:265-275.
  • 2Montjovent MO,Mathieu L,Hinz B,et al.Biocompatibility of bioresorbable poly(L-lactic acid) composite scaffolds obtained by supercritical gas foaming with human fetal bone cells[J].Tissue Eng,2005,11(11-12):1640-1649.
  • 3Kricheldorf H R.Syntheses and application of polylactides[J].Chemosphere,2001,43:49-54.
  • 4Pistner H,Stallforth H,Gutwald R,et al.Poly(L-lactide):a long-term degradation study in vivo.Part Ⅱ.Physico-mechanical behavior of implants[J].Biomaterials,1994,15(6):439-450.
  • 5McManus AJ,Doremus RH,Siegel RW,et al.Evaluation of cytocompatibility and bending modulus of nanaceramic/polymer composites[J].J Biomed Mater Res A,2005,72(1):98-106.
  • 6Suchanek W,Yoshimur M.Processing and properties of hydroxyapatite based biomaterials for use as hard tissue replacement implants[J].J Mater Res,1998,13(1):94-117.
  • 7Deng Xianmo,Hao Jianyuan,Wang Changsheng.Preparation and mechanical properties of nanocomposites of poly (d,1-lactide) with Ca-deficient hydroxyapatite nanocrystals[J].Biomaterials,2001,22:2867-2873.
  • 8Parffit AM,Drezner MK,Glorieux FX,et al.Bone histomorphometry standardization of nomenclature,symbols and units[J].J Bone Miner Res,1987,17:137-146.
  • 9Rizzi SC,Heath DJ,Coombes AGA,et al.Biodegradable polymer/hydroxyapatite composites:surface analysis and initial attachment of human osteoblasts[J].J Biomed Mater Res,2001,55(4):475 -486.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部