期刊文献+

Optimal compatible doses and effects of ephedrine and naloxone on neural plasticity in cerebral ischemia/reperfusion rats 被引量:1

Optimal compatible doses and effects of ephedrine and naloxone on neural plasticity in cerebral ischemia/reperfusion rats
下载PDF
导出
摘要 BACKGROUND: Ephedrine promotes neural plasticity in rats following cerebral ischemia/reperfusion injury. Ephedrine has been combined with naloxone in some studies, and it has been confirmed that their combination has synergistic effects on increasing neural plasticity following cerebral ischemia/reperfusion injury. OBJECTIVE: To investigate the effects of ephedrine combined with various doses of naloxone on neural plasticity and to find an optimal dose of naloxone in rats after cerebral ischemia/reperfusion injury by analyzing growth associated protein-43 (GAP-43), synaptophysin and β-endorphin expression in the hippocampal CA3 area. DESIGN, TIME AND SETTING: This immunohistochemical, randomized, controlled, animal experiment was performed at the Chongqing Research Institute of Pediatrics, China from September 2007 to June 2008. MATERIALS: Ephedrine hydrochloride injection and naloxone hydrochloride injection were respectively purchased from Shandong Lvliang Pharmaceutical Factory, China and Sichuan Jingwei Pharmaceutical Co., Ltd., China. A total of 192 healthy adult Sprague Dawley rats were used to establish models of left middle cerebral artery occlusion using the suture occlusion method. METHODS: At 2 hours following cerebral ischemia, the rats were intraperitoneally injected with 1.5 mg/kg/d ephedrine (ephedrine group), with 0.1, 0.2, or 0.3 mg/kg/d naloxone (low, moderate and high doses of naloxone groups), with 1.5 mg/kg/d ephedrine + 0.1, 0.2, or 0.3 mg/kg/d naloxone (ephedrine + low, moderate and high doses of naloxone groups), and with 0.5 mL saline (model group), respectively. MAIN OUTCOME MEASURES: GAP-43, synaptophysin and β -endorphin expression were detected in the hippocampal CA3 area using immunohistochemistry 1-4 weeks after surgery. Sensorimotor integration in rats was assessed using the beam walking test. RESULTS: GAP-43 and synaptophysin expression was greater in the ephedrine group, and in the ephedrine + moderate and high doses of naloxone groups compared with the model group. GAP-43 and synaptophysin expression was greatest in the ephedrine + high dose of naloxone group at 2 and 3 weeks alter surgery. β -endorphin expression was significantly lower in the ephedrine group, and in the ephedrine + moderate and high doses of naloxone groups compared with the model group (P 〈 0.05). β -endorphin expression was persistently low in the ephedrine + high dose of naloxone group. At 1-3 weeks after surgery, the beam walking test score was significantly higher in the ephedrine group and ephedrine + various doses of naloxone groups than in the model group (P 〈 0.05). The score was higher in the ephedrine + moderate and high doses of naloxone groups than in the ephedrine group (P 〈 0.05). Moreover, the score was increased as the dose of naloxone increased in the ephedrine + various doses of naloxone groups. CONCLUSION: Ephedrine promotes GAP-43 and synaptophysin expression, inhibits /3 -endorphin expression in the hippocampal CA3 area, and improves motor function in rats following cerebral ischemia/reperfusion injury. Naloxone does not have the above-mentioned effects. During combined treatment with ephedrine and naloxone, however, the above-described effects are enhanced with an increased dose of naloxone. The combination of ephedrine (1.5 mg/kg/d) and naloxone (0.3 mg/kg/d) can produce optimal therapeutic efficacy in treatment of cerebral ischemic injury. BACKGROUND: Ephedrine promotes neural plasticity in rats following cerebral ischemia/reperfusion injury. Ephedrine has been combined with naloxone in some studies, and it has been confirmed that their combination has synergistic effects on increasing neural plasticity following cerebral ischemia/reperfusion injury. OBJECTIVE: To investigate the effects of ephedrine combined with various doses of naloxone on neural plasticity and to find an optimal dose of naloxone in rats after cerebral ischemia/reperfusion injury by analyzing growth associated protein-43 (GAP-43), synaptophysin and β-endorphin expression in the hippocampal CA3 area. DESIGN, TIME AND SETTING: This immunohistochemical, randomized, controlled, animal experiment was performed at the Chongqing Research Institute of Pediatrics, China from September 2007 to June 2008. MATERIALS: Ephedrine hydrochloride injection and naloxone hydrochloride injection were respectively purchased from Shandong Lvliang Pharmaceutical Factory, China and Sichuan Jingwei Pharmaceutical Co., Ltd., China. A total of 192 healthy adult Sprague Dawley rats were used to establish models of left middle cerebral artery occlusion using the suture occlusion method. METHODS: At 2 hours following cerebral ischemia, the rats were intraperitoneally injected with 1.5 mg/kg/d ephedrine (ephedrine group), with 0.1, 0.2, or 0.3 mg/kg/d naloxone (low, moderate and high doses of naloxone groups), with 1.5 mg/kg/d ephedrine + 0.1, 0.2, or 0.3 mg/kg/d naloxone (ephedrine + low, moderate and high doses of naloxone groups), and with 0.5 mL saline (model group), respectively. MAIN OUTCOME MEASURES: GAP-43, synaptophysin and β -endorphin expression were detected in the hippocampal CA3 area using immunohistochemistry 1-4 weeks after surgery. Sensorimotor integration in rats was assessed using the beam walking test. RESULTS: GAP-43 and synaptophysin expression was greater in the ephedrine group, and in the ephedrine + moderate and high doses of naloxone groups compared with the model group. GAP-43 and synaptophysin expression was greatest in the ephedrine + high dose of naloxone group at 2 and 3 weeks alter surgery. β -endorphin expression was significantly lower in the ephedrine group, and in the ephedrine + moderate and high doses of naloxone groups compared with the model group (P 〈 0.05). β -endorphin expression was persistently low in the ephedrine + high dose of naloxone group. At 1-3 weeks after surgery, the beam walking test score was significantly higher in the ephedrine group and ephedrine + various doses of naloxone groups than in the model group (P 〈 0.05). The score was higher in the ephedrine + moderate and high doses of naloxone groups than in the ephedrine group (P 〈 0.05). Moreover, the score was increased as the dose of naloxone increased in the ephedrine + various doses of naloxone groups. CONCLUSION: Ephedrine promotes GAP-43 and synaptophysin expression, inhibits /3 -endorphin expression in the hippocampal CA3 area, and improves motor function in rats following cerebral ischemia/reperfusion injury. Naloxone does not have the above-mentioned effects. During combined treatment with ephedrine and naloxone, however, the above-described effects are enhanced with an increased dose of naloxone. The combination of ephedrine (1.5 mg/kg/d) and naloxone (0.3 mg/kg/d) can produce optimal therapeutic efficacy in treatment of cerebral ischemic injury.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第12期1290-1296,共7页 中国神经再生研究(英文版)
基金 a grant from the Bureau of Health of Chongqing City, No. [2007]1(07-2-153)
关键词 cerebral ischemia/reperfusion neural plasticity growth associated protein-43 SYNAPTOPHYSIN β -endorphin EPHEDRINE NALOXONE cerebral ischemia/reperfusion neural plasticity growth associated protein-43 synaptophysin β -endorphin ephedrine naloxone
  • 相关文献

二级参考文献15

  • 1赵晓科,肖农,周江堡,张晓萍.麻黄碱对脑缺血大鼠运动功能恢复的影响及分子机制研究[J].中国康复医学杂志,2005,20(3):172-175. 被引量:12
  • 2龚非力.医学免疫学[M].北京:科学出版社,2005.164-168.
  • 3Feeney DM,Gonzalez A,Law WA.Amphetamine,haloperidol and experience interact to affect the rate of recovery after motor cortex injuries[J].Science,1982,217:855-857.
  • 4Kwakkel G,Kollen B,Lindeman E.Understanding the pattern of functional recovery after stroke[J].Restor Neurol Neurosci,2004,22(3-5):281-299.
  • 5Laifenfeld D,Klein E,Ben-Shachar D.Norepinephrine alters the expression of genes involved in neuronal sprouting and differentiation:relevance for major depression and antidepressant mechanisms[J].J Neurochem,2002,83:1054-1064.
  • 6Feeney DM,De Smet AM,Rai S.Noradrenergic modulation of hemiplegia:facilition and maintenance of recovery[J].Restor Neurosci,2004,22 (3-7):175-190.
  • 7Gu H,Barron BA,Gaugl JF,et al.Naloxone poteniates the innotropic effect of epinephrine in the isolated dog heart[J].Circ Shock,1993,40(3):206-211.
  • 8Rice J E, Vannucci R C, Briedey J B, et al. The influence of immaturity on hypoxic-ischemic brain damage in the rat [ J ]. Ann Neurol, 1981, (9) :131.
  • 9D' Hooge R, De Deyn P P. Applications of the Morris water maze in the study of learning and memory[J]. Brain Res Rev, 2001, 36:60.
  • 10Carulli D, Buffo A, Strata P. Reparative mechanisms in the cerebellar cortex[J]. Prog Neurobiol, 2004,72(6) :373.

共引文献30

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部