期刊文献+

基于快速小波变换和FLD的人脸识别算法 被引量:2

Human Face Recognition Based on Fast Wavelet Transform and FLD
下载PDF
导出
摘要 针对快速性和识别率要求较高的人脸识别应用场合,提出了一种基于快速小波变换(FWT)和Fisher线性鉴别(FLD)的人脸识别算法.首先用Haar小波对标准人脸图像分别进行1尺度和2尺度分解,然后用Fisher线性鉴别法对原始图像、1尺度和2尺度分解图像提取特征,最后利用最近邻法对提取到的特征进行识别.利用ORL标准人脸图像库对算法进行了仿真,结果表明,此算法取得了较快的识别速度和较高的识别率. A human face recognition algorithm based on fast wavelet transform (FWT) and Fisher's linear discriminant(FLD) is presented to meet the requirement of quick face recognition at high rate. In the algorithm the Haar wavelet with scales of 1 and 2 is applied separately to the decomposition of typical human face, then the features are extracted from the original image and the images decomposed on the scales of 1 and 2 by FLD. (bnsequently, the features extracted are recognized by nearest neighbor classifier. A simulation of the algorithm proposed was done on the basis of ORL(Olivetti Research Lab) face database, and the results showed that the algorithm is able to recognize quickly with high recognition rate.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第2期166-168,183,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60874103) 建设部科研基金资助项目(2007-K3-4)
关键词 人脸识别 快速小波变换 FISHER线性鉴别 最近邻法 face recognition fast wavelet transform (FWT) Fisher' s linear discriminant nearest neighbor method
  • 相关文献

参考文献10

  • 1Gonzalez R C, Woods R E. Digital image processing[M]. 2nd ed. Upper Saddle River: Prentice Hall, 2002:276 - 322.
  • 2Gonzalez R C, Woods R E, Eddins S L. Digital image processing using MATLAB [ M]. Upper Saddle River: Prentice Hall, 2003:179 -210.
  • 3Mallat S G. A theory for multi-resolution signal decomposition: the wavelet representation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11(7) :674 - 693.
  • 4Mallat S G. Multiresolution approximation and wavelet orthonomlal bases of L2[J].Transactions of the American Mathematical Society, 1989,315(1):69- 87.
  • 5Lee W S, Lee H J, Chung J H. Wavelet-based FLD for face recognition [C]//Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems. New York: IEEE, 2000 : 734 - 737.
  • 6Smith L I. A tutorial on principal components analysis[EB/ OL]. [2007 - 12- 20]. http://www. cs. otago. ac. nz/ cosc453/student tutorials/pricipal _ components. pdf.
  • 7Belhumeur P N, Hespanha J, Kriegman D J. Eigenfaces vs. fisherfaces: recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intellisgence, 1997,19(7) :711 - 720.
  • 8Turk M, Pentland A. Eigenfaces for recognition [J]. Journal of Cognitive Neuroscience, 1991,3( 1 ) : 71 - 86.
  • 9Ling Y R, Yin X R, Bhandarkar S M. Sirface vs. fisherface: recognition using class specific linear projection [C] //Proceedings of International Conference on Image Processing. Barcelona: IEEE, 2003 : 885 - 888.
  • 10Krzdnowski W J. The performance of Fisher's linear discriminant function under non-optimal conditions [ J ]. Technometrics, 1977,19:191 - 200.

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部