期刊文献+

局部与全局结合的彩色图像序列光流场模型 被引量:2

Models of Color Image Sequence Optical Flow with Local and Global Methods Combined
下载PDF
导出
摘要 针对彩色图像序列光流场计算问题并结合现有光流场计算模型,提出3种将局部彩色光流计算模型与全局彩色光流计算模型相结合的混合光流估计模型,从而有效利用局部光流模型计算精度高及全局光流模型可得到致密光流场的优点,并将3种模型进行比较,给出数值实验结果。 Referenced presented models of optical flow computing, three models of color image sequence optical flow computation with local and global methods combined for color optical flow computing are presented in this paper. The combined models have the advantages of high precision of local model and density of global model. And the models presented are compared with each other. The number experiments results are presented.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第3期7-9,50,共4页 Computer Engineering
基金 高等学校博士学科点基金资助项目(20060217021) 黑龙江省自然科学基金资助重点项目(ZJG0606-01)
关键词 光流 彩色图像 局部优化 全局优化 optical flow color image local optimization global optimization
  • 相关文献

参考文献9

  • 1Ohta N. Optical Flow Detection by Color Images[C]//Proc. of IEEE International Conference on Image Processing. Singapore: [s. n.], 1989: 801~805.
  • 2Ohta N. How Much Does Color Information Help Optical Flow Computation[J]. IEICE Transactions on Information and Systems, 2006, 89(5): 1759-1762.
  • 3Lai J, Gauch J, Crisman J D. Computing Optical Flow in Color Image Sequences[J]. Innovation and Technology in Biology and Medicine, 1994, 15(1): 76-87.
  • 4Golland E Bruckstein A M. Motion from Color[J]. Computer Vision and Image Understanding, 1997, 68(3): 346-362.
  • 5Barron J, Klette R. Quantitative Color Optical Flow[C]//Proc. of the International Conference on Pattern Recognition. Vancouver,Canada: [s. n.], 2002: 251-255.
  • 6Horn B K P, Schunck B G. Determining Optical Flow[J]. Artificial Intelligence, 1981, 17: 185-203.
  • 7Lucas B D, Kanade T. An Iterative Image Registration Technique with an Application to Stereo Vision[C]//Proc. of International Joint Conference on Artificial Intelligence. Vancouver, Canada: [s. n.], 1981 : 674-679.
  • 8Andrews R J, Lovell B C. Color Optical Flow[C]//Proc. of Workshop on Digital Image Computing. Brisbane, Australia: [s. n.], 2003: 135- 139.
  • 9Brubn A, Weickert J. Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods[J]. International Journal of Computer Vision, 2005, 61 (3): 211-231.

同被引文献13

  • 1戴渊明,张翔,王再富.基于改进概率霍夫变换算法的车道检测方法研究[J].杭州电子科技大学学报(自然科学版),2006,26(5):91-95. 被引量:7
  • 2HORN B K P, SCHUNCK B G. Determining optical flow[J]. Sehunck Artificial Intelligence, 1981,58 (3) : 185-203.
  • 3He Zhiwei, Liu Jilin, Li Peihong. New method of background update for video-based vehicle detection[C]//Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems. Washington D C,2004.
  • 4Ohta N. Optical Flow Detection By Color hnages[ C ] //Proceed ings of IEEE International Conference on Image Processing USA:IEEE Press,1989, 801 - 805.
  • 5Golland P, Bruekstein A. Motion from Color [J]. Computer Vi- sion And Image Understanding, 1997, 68 (3) :346- 362.
  • 6Gong H. Generalized Optical Flow in the Scale Space [ J]. Com- puter Vision and hnage Understanding, 2007, 105 ( 1 ) : 86 -92.
  • 7Jammal A, Venkatesh K S. A New Color Based Optical Flow Al- gorithm for Environment Mapping Using Mobile Robot[ C ] // Pro- ceedings of 22nd IEEE International Symposium on Intelligent Control. USA : IEEE Press. 2007 : 567 - 572.
  • 8Horn B K P, Schunck B G. Determining Optical Flow [J]. Arti- ficial Intelligence, 1981 , 17(1/3) :185 203.
  • 9Lucas B D, Kanade T. An Interactive Image Registration Tech- nique with Application to Stereovision [ C ]//Hayes P J. Proceed- ings of International Joint Conference on Artificial Intelligence. San Trancisco, CA, USA: Morgan Kaufmann Publishers lnc, 1981 (2) :121 -130.
  • 10Carron T, Lambert P. Color Edge Detector Using Jointly Hue, Saturation, and Intensity[ C ]//Proceedings of IEEE International Conference on. Image Processing. USA: IEEE Press, 1994, 1 (3) :977-981.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部