期刊文献+

企业内部基于角色协作的个性化搜索系统 被引量:2

Personalized Search System in Enterprise Based on Role Collaborative
下载PDF
导出
摘要 随着信息系统的升级和Web2.0系统的广泛应用,现代化企业的内部信息正在呈爆炸性的增长,为提高海量信息检索的精确度,该文设计一个个性化搜索系统,该系统采用分类和聚类等传统信息过滤技术,提出基于角色的协作模型。实验结果表明,新的协作模型能更有效地挖掘企业用户的个性化需求,使搜索结果更为精确。 Influenced by the upgrading of information systems and the booming of Web 2.0 applications, the information inside a modern enterprise is growing explosively. In order to promote the accuracy of searching results in massive information, this paper designs a personalized search system, which uses the traditional information filtering technology such as classification and gathering. The role-based collaborative model is also proposed. Experimental results show this new collaborative model can find out the personalized requirement of enterprise users more efficiently and make the sarech results more accurate.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第3期39-41,共3页 Computer Engineering
基金 英特尔中国研发中心创新研究基金资助项目
关键词 个性化 企业搜索 基于角色 推荐系统 personalization enterprise search role-based recommendation system
  • 相关文献

参考文献3

  • 1Broder A Z, Ciccolo A C. Towards the Next Generation of Enterprise Search Technology[J]. IBM Systems Journal, 2004, 43(3): 451-454.
  • 2曾春,邢春晓,周立柱.个性化服务技术综述[J].软件学报,2002,13(10):1952-1961. 被引量:395
  • 3Sebastiani F. Machine Learning in Automated Text Categorization[J]. ACM Computing Surveys, 2002, 34(1): 1-47.

二级参考文献41

  • 1Han, E.H., Boley, D., Gini, M., et al. WebACE: a web agent for document c ategorization and exploration. In: Sycara, K.P., Wooldridge, M., eds. Proceeding s of the 2nd International Conference on Autonomous Agents. New York: ACM Press, 1998. 408~415.
  • 2Schwab, I., Pohl, W., Koychev, I. Learning to recommend from positive evi dence. In: Riecken, D., Benyon, D., Lieberman, H., eds. Proceedings of the Inter national Conference on Intelligent User Interfaces. New York: ACM Press, 2000. 2 41~247.
  • 3Pretschner, A. Ontology based personalized search [MS. Thesis]. Lawrence, KS: University of Kansas, 1999.
  • 4Adomavicius, G., Tuzhilin, A. User profiling in personalization applicati ons through rule discovery and validation. In: Lee, D., Schkolnick, M., Provost, F., et al., eds. Proceedings of the 5th International Conference on Data Mining and Knowledge Discovery. New York: ACM Press, 1999. 377~381.
  • 5Balabanovic, M., Shoham, Y. Fab: content-based, collaborative recommendat ion. Communications of the ACM, 1997,40(3):66~72.
  • 6Sarwar, B.M., Karypis, G., Konstan, J.A., et al. Application of dimension ality reduction in recommender system--a case study. In: Jhingran, A., Mason, J.M., Tygar, D., eds. Proceedings of the ACM WebKDD Workshop on Web Mining for E -Commerce. New York: ACM Press, 2000.
  • 7Sarwar, B.M., Karypis, G., Konstan, J.A., et al. Analysis of recommendati on algorithms for e-commerce. In: Proceedings of the ACM Conference on Electroni c Commerce. New York: ACM Press, 2000. 158~167.
  • 8Breese, J.S., Heckerman, D., Kadie, C. Empirical analysis of predictive a lgorithms for collaborative filtering. In: Cooper, G.F., Moral, S., eds. Proceed ings of the 14th Conference on Uncertainty in Artificial Intelligence. San Franc isco: Morgan Kaufmann Publishers, 1998. 43~52.
  • 9Aggarwal, C.C., Wolf, J.L., Wu, K., et al. Horting hatches an egg: a new raph-theoretic approach to collaborative filtering. In: Chaudhuri, S., Madigan, D., Fayyad, U., eds. Proceedings of the ACM International Conference on Knowledg e Discovery and Data Mining. New York: ACM Press, 1999. 201~212.
  • 10Sarwar, B., Karypis, G., Konstan, J., et al. Item-Based collaborative fil tering recommendation algorithms. In: Shen, V.Y., Saito, N., eds. Proceedings of the 10th International World Wide Web Conference (WWW10). 2001. 285~295.

共引文献394

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部