期刊文献+

基于用户满意度的学习服务发现算法 被引量:2

E-learning Services Discovery Algorithm Based on User Satisfaction
下载PDF
导出
摘要 引入用户满意度因子,设计一个学习服务发现算法——eLSDAUS,并应用于网络学习系统中。该算法允许用户参与服务发现的过程,对服务发现的效果进行评价。学习服务发现系统将用户评价反馈到学习服务发现算法,利用修正函数修正更新发布服务各属性的匹配度权值,优化反馈给用户的综合匹配度的计算。实验结果表明,在发布的学习服务数量超过1万时,该算法能提高服务发现的查全率4%~5%。网络学习者使用该系统7天后,对学习服务发现结果的总体满意比率可达到93%以上。 This paper proposes a novel e-learning service discovery algorithm eLSDAUS. A factor of user satisfaction which is the user's feelings to the result of service discovery is led-in. This algorithm allows users to take part in the process of e-learning service discovery, and allows them to evaluate the result of service discovery. User's evaluation is fed back to the system. With the help of penalty function, the system modifies the weight of each property of the advertise service, and then total match degree of service discovery up to best. Experiment indicates that the precision of the service discovery improves 4%-5% as the number of advertisement services up to 10 000. After learning for one week, over 93% students are satisfied with the e-learning service discovery result.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第3期71-73,共3页 Computer Engineering
基金 国家发改委科学研究计划基金资助项目"CNGI远程教学公用通信平台系统"(CNGI-04-15-3A) 国家"十一五"重大科技攻关计划基金资助项目"数字教育公共服务平台中的若干关键技术研究"(2006BAH02A24-6)
关键词 学习服务 服务发现算法 用户满意度 修正函数 e-learning services service discovery algorithm user satisfaction modification function
  • 相关文献

参考文献5

  • 1Cho Hichang, Gay G, Davidson B. Social Networks, Communication Styles, and Learning Performance in a CSCL Community[J]. Computers & Education, 2007, 49(2): 309-329.
  • 2Hernatndez-Leo D, Villasclaras-Fernandez E D, Asensio-Perez J I, et al. Linking Collaborative Learning Practice with IMS LD and Service-oriented Technologies: An Approach Based on Collaborative Learning Flow Patterns[C]//Proc. of the 6th International Conf. on Advanced Learning Technologies. Kerkrade, Netherlands: [s. n.], 2006.
  • 3Gao Shu, Rana O F, Avis N J. Ontology-based Semantic Matchmaking Approach[J]. Advances in Engineering Software, 2007, 38(1): 59-67.
  • 4潘薇,叶晓俊.提高客户满意度的决策支持模型[J].哈尔滨工业大学学报,2005,37(4):504-506. 被引量:6
  • 5张正,左春,王裕国.基于语义扩展的Web服务发现方法[J].通信学报,2007,28(1):57-63. 被引量:15

二级参考文献23

共引文献18

同被引文献18

  • 1马华,李建华,陈松乔,刘星沙.基于本体聚类的面向业务用户服务发现模型[J].计算机工程,2007,33(4):215-217. 被引量:2
  • 2Stollberg M,Hepp M,Hoffmann J.A Caching Mechanism for Semantic Web Service Discovery[C] //Proceedings of the 6th International Semantic Web Conference.Busan,Korea,[s.n.] ,2007.
  • 3Lee S Y,Lee J Y,Lee B I.Service Composition Techniques Using Data Mining for Ubiquitous Computing Environments[J].International Journal of Computer Science and Network Security,2006,6(9):110-117.
  • 4WANG P. QoS-aware Web services selection with intuitionistic fuzzy set under consumer's vague perception[J].Expert Systems With Applications,2009,(03):4460-4466.
  • 5Blake M B,Nowlan M F. A web service recommender system using enhanced syntactical matching[A].Salt Lake City,Utah,USA,2007.575-582.
  • 6Aciar S,Zhang D,Simoff S. Informed recommender:Basing recommendations on consumer product reviews[J].IEEE Intelligent Systems,2007,(03):39-47.
  • 7Sufyan Beg MM,Nesar Ahmad. Web search enhancement by mining user actions[J].Information Sciences,2007,(23):5203-5218.
  • 8Laddawan Kulnarattana,Songsak Rongviriyapanish. A client perceived QoS model for web services selection[A].2009.731-734.
  • 9冯在文,何克清,李兵,龚平,何扬帆,刘玮.一种基于情境推理的语义Web服务发现方法[J].计算机学报,2008,31(8):1354-1363. 被引量:32
  • 10邹金安.基于QoS的语义Web服务发现研究[J].计算机应用,2009,29(10):2844-2846. 被引量:7

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部