期刊文献+

基于支持向量机的英语名词短语指代消解 被引量:1

Anaphora Resolution of Noun Phrase Based on SVM
下载PDF
导出
摘要 提出一种基于支持向量机(SVM)的英语名词短语的指代消解方法,并给出具体实现系统。实验采用了几个常用的基本特征,在MUC-6公开语料上测试得到的F值为68.6,优于同类型的其他原型系统。分析SVM中不同核函数对分类结果的影响以及不同的特征对指代消解的作用。实验结果表明,同位语、别名和字符串匹配3个特征对指代消解非常重要,距离作为特征使用时对指代消解没有帮助,但可在训练样例生成时作为限制条件来使用。 This paper proposes an anaphora resolution of noun phrases based on Support Vector Machine(SVM). Evaluation on the MUC-6 corpus using several widely used features shows that the system achieves the F-measure of 68.6% and outperforms other similar systems. Further analysis shows that appositive, name alias and full string matching contributes most for anaphora resolution. It also shows that the distance between the antecedent candidate and the anaphor is very useful in constraining the instance generation, although including it as a feature does not help for anaphora resolution.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第3期199-201,204,共4页 Computer Engineering
基金 国家自然科学基金资助项目(60673041) 国家"863"计划基金资助项目(2006AA01Z147)
关键词 指代消解 支持向量机 核函数 anaphora resolution Support Vector Machine(SVM) kernel function
  • 相关文献

参考文献6

  • 1王厚峰.指代消解的基本方法和实现技术[J].中文信息学报,2002,16(6):9-17. 被引量:46
  • 2Wee Meng Soon, Hwee Tou N H T, Lim D C Y. A Machine Learning Approach to Coreference Resolution of Noun Phrase[J]. Computational Linguistics, 2001, 27(4): 521-544.
  • 3Vincent N, Cardie C. Improving Machine Learning Approaches to Coreference Resolution[C]HProc. of the 40th Annual Meeting of the Association for Computational Linguistics. Philadelphia, PA, USA: [s. n.], 2002.
  • 4Taylor J S.支持向量机导论[M].李国正,王猛,曾华军,译.北京:电子工业出版社,2004.
  • 5Yang Xiaofeng, Su Jian, Zhou Guodong, et al. Improving Pronoun Resolution by Incorporating Coreferential Information of Candidates[C]//Proc. of ACL'04. Barcelona, Spain: [s. n.], 2004.
  • 6Zhou Guodong, Su Jian. A Resolution System Using a Strategy[C]//Proc. of COLING'04 2004. High-performance Coreference Constraint-based Multi-Agent Geneva, Switzerland: [s. n.],

二级参考文献4

共引文献45

同被引文献4

  • 1Ng S H, Lim D. A Machine Learning Approach to Coreference Resolution of Noun Phrases[J]. Computational Linguistics, 2001, 27(4): 521-544.
  • 2Cardie N C. Improving Machine Learning Approaches to Corefe- rence Resolution[C]//Proc. of the 40th Annual Meeting on Asso- ciation for Computational Linguistics. Stroudsburg, USA: [s. n.], 2002: 104-111.
  • 3Ng V. Semantic Class Induction and Coreference Resolution[C]// Proc. of the 45th Annual Meeting of the Association of Computational Linguistics. Prague, Czech: [s. n.], 2007: 536-543.
  • 4王厚峰,何婷婷.汉语中人称代词的消解研究[J].计算机学报,2001,24(2):136-143. 被引量:36

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部