期刊文献+

多用户多准则随机系统最优与最优收费 被引量:2

THE MULTI-CLASS,MULTI-CRITERIA STOCHASTIC SYSTEM OPTIMUM AND OPTIMAL TOLL PROBLEM
原文传递
导出
摘要 针对固定交通需求量和出行者的时间价值为离散分布的多准则随机交通均衡,分别研究了依费用度量和依时间度量的多用户多准则随机系统最优和最优收费问题.分别建立了基于费用和基于时间的随机系统最优的最优化模型,阐述了该模型解的唯一性条件及等价的变分不等式问题.运用变分不等式方法,研究了一阶最优收费的可行性,即能否依边际定价原则,通过收取与出行者类别无关的道路收费使多用户多准则随机均衡流与随机系统最优流一致.一阶最优收费不适用于依时间度量的随机系统最优情况,因而建立了一个最优化模型来得到此时的非歧视性道路收费.最后给出了具体算例. In view of multi-criteria stochastic network equilibrium with fixed demand and discrete value of time, the multi-class, multi-criteria stochastic system optimum and optimal tolling problem are considered, in time and cost respectively. Two stochastic system optimization models are established on the basis of cost and time, respectively. Also the uniqueness conditions of their solutions and equivalent variational inequality problems are obtained. The feasibility of the first order best toll is studied. Since the first order best toll is not suitable for time-based stochastic system optimum, an optimization model is presented to find the feasible toll pattern. Finally, an example is shown.
作者 徐兵 朱道立
出处 《系统科学与数学》 CSCD 北大核心 2009年第1期80-93,共14页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金重点项目(70432001) 中国博士后基金(20060400584) 江西省自科基金(2007GZS2120) 江西省教育厅(赣教技字[2007]10号)项目资助
关键词 随机均衡 系统最优 一阶最优收费 变分不等式 Stochastic traffic network equilibrium, system optimum, first order best toll, variational inequality.
  • 相关文献

参考文献22

  • 1Yang H and Huang H J. Principle of marginal-cost pricing: How does it work in a general network. Trans. Res., 1998, 32A: 45-54.
  • 2Ferrari P. Road pricing and network equilibrium. Trans. Res., 1995, 29B(5): 357-372.
  • 3Dial R B. Minimal-revenue congestion pricing part II: An efficient algorithm for the general case. Trans. Res., 2000, 34B: 645 665.
  • 4Yang H and Meng Q. Highway pricing and capacity choice in a road network under a build-operatetransfer scheme. Trans. Res., 2000, 34A: 207-222.
  • 5Yang H, Tang W H, Cheung W M and Meng Q. Profitability and welfare gain of private toll roads in a network with heterogeneous users. Trans. Res., 2002, 36A: 537-554.
  • 6Yang H and Huang H J. The multi-class, multi-criteria traffic network equilibrium and systems optimum problem. Trans. Res., 2004, 38B: 1-15.
  • 7Yang H. System optimum, stochastic user equilibrium and optimal link tolls. Trans. Sci., 1999, 33(4): 354-360.
  • 8Pigou A C. The Economics of Welfare. London: Machillan and Co., Limited, 1952.
  • 9Beckmann M J. On Optimal Tolls for Highways, Tunnels and Bridges. Vehicular Traffic Science. New York: American Elsevier, 1965, 331 -341.
  • 10Dafermos S C. Traffic assignment problem for multiclass-user transportation. Trans. Sci., 1973, 6:73 -87.

二级参考文献2

  • 1黄海军,Transportation Res,1992年,26卷,B期,325页
  • 2Chen M,Transportation Res,1991年,25卷,B期,405页

共引文献29

同被引文献28

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部