摘要
详细讨论了从Allen代数演化为INDU代数的思路和INDU代数的几何表示。研究指出,INDU是Allen代数中原子关系的细分和可采纳域的细化,对于路径一致性计算它是比Allen更为准确的方法;但是在约束网络推理计算中由于INDU的合成运算表过于庞大,仍可使用Allen代数合成运算表。将Allen代数与INDU代数结合使用是时态约束网络定性推理的较好方法。
The evolution is Discussed from Alien' s algebra DU algebra. The study shows that INDU algebra is the refine to INDU algebra and the geometric expression of IN- of the atomic relations and the admissible regions of Allen' s algebra. It is a more precise method of path-consistency calculating than Allen' s. But the composition table of INDU algebra is much bigger than the Allen' s. Hence the composition table of Allen' s algebra still has its value. It is the best way to combine INDU algebra and Alien' s algebra in the qualitative reasoning of temporal constraints networks.
出处
《科学技术与工程》
2009年第4期1012-1015,共4页
Science Technology and Engineering
基金
总装备部武器装备预研基金(51406020104CB0201)资助
关键词
时态推理
约束网络
区间代数
INDU代数
temporal reasoning constraint network interval algebra INDU algebra