期刊文献+

区间代数与区间段代数在定性时态推理中的联合运用

Integral Usage of Interval Algebra and INDU Algebra in Qualitative Temporal Reasoning
下载PDF
导出
摘要 详细讨论了从Allen代数演化为INDU代数的思路和INDU代数的几何表示。研究指出,INDU是Allen代数中原子关系的细分和可采纳域的细化,对于路径一致性计算它是比Allen更为准确的方法;但是在约束网络推理计算中由于INDU的合成运算表过于庞大,仍可使用Allen代数合成运算表。将Allen代数与INDU代数结合使用是时态约束网络定性推理的较好方法。 The evolution is Discussed from Alien' s algebra DU algebra. The study shows that INDU algebra is the refine to INDU algebra and the geometric expression of IN- of the atomic relations and the admissible regions of Allen' s algebra. It is a more precise method of path-consistency calculating than Allen' s. But the composition table of INDU algebra is much bigger than the Allen' s. Hence the composition table of Allen' s algebra still has its value. It is the best way to combine INDU algebra and Alien' s algebra in the qualitative reasoning of temporal constraints networks.
出处 《科学技术与工程》 2009年第4期1012-1015,共4页 Science Technology and Engineering
基金 总装备部武器装备预研基金(51406020104CB0201)资助
关键词 时态推理 约束网络 区间代数 INDU代数 temporal reasoning constraint network interval algebra INDU algebra
  • 相关文献

参考文献1

二级参考文献5

  • 1[1]Allen J.Maintaining knowledge about temporal intervals.Communications of the ACM 1983 ;26 (11):832-843
  • 2[2]Zhang Shichao,Zhang Chengqi.A method for interval calculus in matrix.Knowledge and Information Systems,1999;1 (2):257-268
  • 3[3]van Beek P.Reasoning about qualitative temporal information.AI,1992; (58):297-326
  • 4[4]Allen J,Hayes P.Moments and points in an interval-based temporal logic.Computational Intelligence,1989; (5):225-238
  • 5[5]Xia Z,H.Fang and.IA and PA network-based computation of coordinating combat behaviors in the military MAS.Proceedings of SPIE'04,Vol.5403,727-733

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部