期刊文献+

集合论的反基础公理 被引量:4

原文传递
导出
作者 李娜 史璟
机构地区 南开大学哲学系
出处 《哲学动态》 CSSCI 北大核心 2009年第1期100-105,共6页 Philosophical Trends
  • 相关文献

参考文献13

  • 1P. Aczel,Non- Well- Founded Sets, CSLI , Stanford, 1988.
  • 2T.E. Forster, Set Theory with a Universal Set: Exploring an Untyped Universe,New York: Oxford University Press, 1992.
  • 3J. Barwise and L. Moss, Vicious Circles : On the Mathematics of Non - well -founded Phenomena, CSLI, Stanford, 1996.
  • 4G. A. Antonelli, "Extensional Quotients for Type Theory and the Consistency Problem for NF," Journal of Symbolic Logic, 63 ( 1 ), 1998.
  • 5B. Sidney Smith, "Hypersets," PhD Dissertation, University of Cambridge, 1996.
  • 6J. Lurie. "Anti -Admissible Sets, "Journal of Symbolic Logic 64(2), 1999.
  • 7M. Rathjen ," Kripke - Platek Set Theory and the Anti - Foundation Axiom, "Mathematical Logic 4, 2001.
  • 8B. Van den Berg & F. De Marchi, "Non - well - founded Trees in Categories," Annals of Pure and Applied Logic 146( 1 ), 2006.
  • 9T. Nitta & T. Okada, "Classifcation of Non - well - founded Sets and an Application," Mathematical Logic Quarterly 49 (2), 2003.
  • 10I. Jane & G. Uzquiano ," Well - and Non - well - founded Fregean Extensions, "Journal of Philosophical Logic 33 ( 5 ), 2004.

共引文献5

同被引文献12

  • 1B. Pierce. Basic category theory for computer scientist[M]. Cambridge MA: the MIT press, 199l.
  • 2Steve Awodey. Category theory[M]. Clarendon Press, 2006.
  • 3B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction[J]. Bulletin of the European Association for Theoretical Computer Science, 1997(62) :222-259.
  • 4P. Aczel. Non-well-founded sets[M]. Stanford CSLI Publications, 1988.
  • 5J. Barwise and L. Moss. Vicious circles: on the mathematics of non-well-founded phenomena[M]. CSLI Lecture Notes, Number 60. Stanford: CSLI Publications, 1996.
  • 6A. Baltag. STS: A structural theory of sets[M]. Ph.D. dissertation, Indiana University, 1998.
  • 7L. Moss. Coalgebraic logic[J]. Annals of Pure and Applied Logic, 1999(96) :277-317.
  • 8P. Blackburn, M. de Rijke and Yde Venema. Modal logic[M]. Cambridge University Press, 2001.
  • 9Yde Venema. Algebras and coalgebras. In J. van Benthem et. Al. , ed. , Handbook of modal logic[M]. Elsevier, 2007.
  • 10H. Peter Gumm. Birkhoff's variety theorem for coalgebras[J]. Contributions to General Algebra, 2000(13):159-173.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部