期刊文献+

欺骗干扰信号中多普勒频率变化率测量技术研究

Research of Measure Techniques for Doppler Frequency Rate-of-Change in Deceive Jamming Signals
下载PDF
导出
摘要 对欺骗干扰源进行单站无源定位与跟踪的一个关键技术就是能否实现多普勒频率变化率的高精度测量。受限于干扰源的运动速度,多普勒频率变化率信息一般都非常微弱。本文提出了一种基于Morlet小波变换的高精度多普勒频率变化率估计方法,通过对欺骗干扰信号的小波变换系数自相关,增强了多普勒频率变化率信息,消除了相位模糊。计算机仿真研究表明在一般无源观测条件下多普勒频率变化率的估计均方误差能逼近CRLB。 In the passive locating and tracking of single observer for deceive jamming source, a key technology is an accurate measurement of Doppler Frequency Rate-of-Change. Limited to velocity of jamming source, the Doppler Frequency Rate-of-Change is very subtle. In this paper, an accurate measuring method is proposed to estimate the Doppler Frequency Rate-of-Change based on Morlet wavelet transform. According as auto correlating the wavelet transform coe^cient of deceive jamming signal ,the Doppler Frequency Rate- of-Change is enhanced and phase ambiguity is unwrapped. The computer simulation study shows that mean square error of the Doppler Frequency Rate-of-Change approach CRLB in a common passive observing condition.
出处 《信号处理》 CSCD 北大核心 2009年第1期94-98,共5页 Journal of Signal Processing
关键词 欺骗干扰 多普勒频率变化率 MORLET小波 参数估计 Deceive Jamming Doppler Frequency Rate-of-Change Morlet Wavelet Parameter Estimation
  • 相关文献

参考文献10

  • 1孙仲康.基于运动学原理的无源定位技术[J].制导与引信,2001,22(1):40-44. 被引量:48
  • 2郭福成,孙仲康.脉冲序列多普勒频率变化率测量技术[c].北京:雷达无源定位跟踪技术研讨会论文集,2001.
  • 3Abatzoglou T. J. Fast Maximum Likelihood Joint Estimation of Frequency and Frequency Rate [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22 ( 6 ) : 708-715.
  • 4Djuric Petar M. , Kay Steven M. Parameter Estimation of Chirp Signals[ J ]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990,38 ( 12 ) : 2118 -2126.
  • 5冯道旺,周一宇,李宗华.相参脉冲序列多普勒变化率的一种快速高精度测量方法[J].信号处理,2004,20(1):40-43. 被引量:18
  • 6潘明海,刘永坦,赵淑清.利用小波变换的高性能谱估计算法[J].电子科学学刊,2000,22(4):555-559. 被引量:14
  • 7Rioul O. , Vetterli M. Wavelets and Signal Processing[ J ]. IEEE Signal Processing Magazine, 1991,8 (4) : 14-38.
  • 8Scheper R. A. , Teolis A. Cramer-Rao Bounds for Wavelet Transform-Based Instantaneous Frequency Estimates [ J ]. IEEE Transactions on Signal Processing, 2003,51 ( 6 ) : 1593-1603.
  • 9Tretter S. A. Estimating the Frequency of a Noisy Sinusoid by Linear Regression[ J]. IEEE Transactions on Information Theory,1985,32(6) :832-835.
  • 10Ristic Branko, Boashash Boualem. Comments On "the Cramer-Rao Lower Bounds for Signals with Constant Amplitude and Polynomial Phase" [ J ]. IEEE Transactions on Signal Processing, 1998,46 (6) : 1708-1709.

二级参考文献11

  • 1丁宏,戴逸松,石要武.采用小波变换对短数据信号的谱估计方法[J].电子学报,1997,25(1):11-14. 被引量:34
  • 2张治国 罗景青.无源观测下运动辐射源多普勒频差ESPRIT算法[J].中国人民解放军电子工程学院学报,1:7-9.
  • 3M. Ghogho, A. K. Nandi and A. Swami,"Cramer-Rao Bounds and Maximum LikelihoodEstimation for Random Amplitude Phase-Modulated Signals", IEEE Trans. on Signal Processing, Vol 47, NO.11, Nov. 1999.
  • 4S. Peleg and B. Porat, "The Cramer-Rao Bound for Signals with Constant Amplitude and Polynomial Phase", IEEE Trans. on Signal Processing, Vol. 39,NO. 3, March 1991.
  • 5S. A. Tretter, "Estimating the Frequency of a Noisy Sinusoid by Linear Regression", IEEE Trans on Info.Theory, pp. 832-835, Nov. 1985.
  • 6S. M. Kay, "Statistically/Computationally Efficient Frequency Estimation", in Proc. IEEE International Conference on Acoustic, Speech, and Signal Proc.,(New York), pp. 2292-2295, 1988.
  • 7E. Kelly, "The Radar Measurement of Range,Velocity and Acceleration", IRE Trans. on Military Electronics, Vol. MIL-5, pp. 51-57, April 1962.
  • 8S. Barbarossa and A. Farina, "Detection and imaging of moving objects with synthetic aperture radar. 2. Joint time-frequency analysis by Wigner-Ville distribution", IEE Proceedings-F vol.139, pp. 89-97, 1992.
  • 9S. Peleg and B. Friedlander, "The Discrete Polynomial-Phase Transform", IEEE Trans. on Signal Processing, Vol 43, NO. 8, pp. 422-430, August 1995.
  • 10孙仲康.基于运动学原理的无源定位技术[C]//雷达无源定位跟踪技术研讨会论文集,北京、2001:1-7.

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部