期刊文献+

量子密钥分配协议的Petri网建模及安全性分析 被引量:1

Security analysis on the Petri-net model of quantum key distribution protocol
下载PDF
导出
摘要 量子密钥分配协议已经被证明具有无条件安全特性,但是证明过程比较复杂,不利于推广到其他量子密码协议的安全性分析和证明中。为了简化量子密码协议的安全性证明以及建立一种通用的证明方法,基于Petri网提出一种量子密钥分配协议的形式化分析方法,根据Biham的等效对称化攻击模型,将协议分为主体模型和攻击模型两部分,建立了BB84协议的Petri网模型,然后对模型进行安全性分析,分析结果表明,BB84协议是无条件安全的。该方法提高了安全性分析效率,形式上简洁统一,容易推广到其他量子密码协议的安全性分析中。 Quantum key distribution protocols are already proved to be unconditionally secure, however, the complexity of the existed proving versions makes it a difficult way to further spread into the security proving of other quantum cryptography protocols. To address this problem, a new method of security analysis of QKD protocols is introduced. Based on the equivalence attack model of QKD protocols which is refered to Biham's proving, the protocol is divided into two parts: the body and the attack, then a Petri-net model of BB84 is obtained, and a security analysis is followed. The formal annlysis of QKD protocols based on Petri-net can improve the efficiency of security analysis. Because of its simpleness and unification, it becomes more easy to apply this method to other quantum cryptography protocols.
出处 《量子电子学报》 CAS CSCD 北大核心 2009年第1期50-55,共6页 Chinese Journal of Quantum Electronics
基金 国家自然科学基金资助项目(60472032)
关键词 量子信息 形式化分析 PETRI网建模 无条件安全 quantum information formal analysis Petri-net modeling unconditional security
  • 相关文献

参考文献7

  • 1Lo H K, Chau H F. Unconditional security of quantum key distribution over arbitrarily long distances [J]. Science, 1999, 283: 2050-2056, arXive e-print quant-ph/9803006.
  • 2Lo H K. Proof of unconditional security of six-state quantum key distribution scheme [J]. Quantum Information and Computation, 2001,1(2): 81-94.
  • 3Lo H K, Chau H F. Unconditional security of quantum key distribution over arbitrarily long distances [J]. Science, 1999, 283: 2050-2056.
  • 4Gottesman D, Lo H K. Proof of security of quantum key distribution with two-way classical communications [J]. IEEE Transactions on Information Theory, 2003, 49(2): 457-475.
  • 5Dominic Mayers. Unconditional security in quantum cryptography [J]. Journal of the ACM, 2001, 48(3): 351-406.
  • 6Biham E, Boyer M, Boykin P O, et al. A Proof of the Security of Quantum Key Distribution lOLl. arXiv:quantph/9912053 v1 11 Dec 1999.
  • 7Bennett C H, Brassard G. Quantum crypotography:public key distribution and coin tossing [C]. Proc. IEEE Int. Conference on Computers, Systems and Signal Processing [M]. New York: 1984.

同被引文献17

  • 1Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing [C]. Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing [M]. 1984: 175-179.
  • 2Aleksic S, Winkler D, Poppe A, et al. Distribution of quantum keys in optically transparent networks: Perspec- tives, limitations and challenges [C]. Transparent Optical Networks (ICTON), 2013 15th International Conference on IEEE [M]. 2013: 1-6.
  • 3Townsend P D. Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing [J]. Electr. Left., 1997, 33(3): 188-190.
  • 4Nweke N I, Toliver P, Runser R J, et al. Experimental characterization of the separation between wavelength- multiplexed quantum and classical communication channels [J]. Appl. Phys. Left., 2005, 87(17): 174103.
  • 5Eraerds P, Walenta N, et al. Quantum key distribution and 1 Gbps data encryption over a single fibre [J]. New Journal of Physics, 2010, 12(6): 063027.
  • 6Chapuran T E, Toliver P, Peters N A, et al. Optical networking for quantum key distribution and quantum communications [J]. New Journal of Physics, 2009, 11(10): 105001.
  • 7Xia T J, Chen D Z, Wellbrock G A, et al. In-band quantum key distribution (QKD) on fiber populated by high- speed classical data channels [C]. Optical Fiber Communication Conference, Optical Society of America, 2006, OTuJ7.
  • 8Wang Q, Chen W, Xavier G, et al. Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source [J]. Phys. Rev. Left., 2008, 100(9): 090501.
  • 9Qi B, Zhu W, Qian L, et al. Feasibility of quantum key distribution through a dense wavelength division multi- pleating network [J]. New Journal of Physics, 2010, 12(10): 103042.
  • 10Patel K A, Dynes J F, Choi I, et al. Coexistence of high-bit-rate quantum key distribution and data on opticM fiber [J]. Phys. Rev. X, 2012, 2(4): 041010.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部