期刊文献+

潜伏期和染病期均具有康复的年龄结构MSEIS流行病模型的稳定性 被引量:4

Stability of an Age-structured MSEIS Epidemic Model with Recovery both in Latent Period and in Infectious Period
下载PDF
导出
摘要 本文建立和研究了潜伏期和染病期均具有康复的年龄结构MSEIS流行病模型.在总人口规模不变的假设下,得到了决定疾病消亡与否的基本再生数R0的表达式,证明了当R0<1时,无病平衡点是局部和全局渐近稳定的,此时疾病消失;当R0>1时,无病平衡点不稳定,此时系统至少存在一个地方病平衡点,并在一定条件下证明了地方病平衡点的局部渐近稳定性. An age-structured MSEIS epidemic model with recovery both in latent period and in infectious period is studied. By using the theory and methods in differential and integral equation, the explicit expression of the basic reproductive number was first obtained,it is showed that the disease-free equilibrium is locally and globally asymptotically stable if 〈1 , at least one endemic equilibrium exists if 〉 1, the stability conditions of the endemic equilibrium are also given.
出处 《应用数学》 CSCD 北大核心 2009年第1期90-100,共11页 Mathematica Applicata
基金 国家自然科学基金(10671166 10371105) 河南省杰出青年科学基金(0312002000)
关键词 年龄结构MSEIS流行病模型 潜伏期 基本再生数 地方病平衡点 稳定性 Age-structured MSEIS epidemic model Latent period The basic reproductive number Endemic equilibrium Stability
  • 相关文献

参考文献3

二级参考文献29

  • 1耿贵珍,佟毅.GARCH模型的相依性[J].辽宁石油化工大学学报,2007,27(3):93-95. 被引量:4
  • 2Anderson, R.M., May, R.M. Population biology of infectious disease I, Nature, 180:361 (1979).
  • 3Busenberg, S., Iannelli, M., Thieme, H. Dynamics of an age-structured epidemic model, in Proceedings on Dynamical Systems, Lecture Notes in Math. (Nankai Subseries) (Edited by S.T.Liao, Y.Q. Ye and T.R.Ding), World scientific, 1 19 (1993).
  • 4Busenberg, S., Iannelli, hi.. Thieme, H. Global behavior of an age-structured epidemic model. SIAM J.Math. Anal., 22:1065-1080 (1991).
  • 5Cha, Y., Iannelli, M., Milner, E. Existence and uniqueness of endemic states for the age-structured SIR epidemic model. Math. Biosci., 150:177-190 (1998).
  • 6E1-Doma, M, Analysis of an age-dependent SIS epidemic model with vertical transmission and proportionatemixing assumption. Math. Comput. Model. 29:31-43 (1999).
  • 7Green-halgh, D. Analytical threshold and stability results on age-structured epidemic models with vaccination. Theor. Popul. Biol., 33:266-290 (1988).
  • 8Greenhalgh, D. Threshold and stability results for an epidemic model with an age-structured meeting rateIMA J. Math. Appl. Med. Biol., 5:81-100 (1988).
  • 9Hadeler, K.P. Periodic solutions of homogeneous equations, J. Diff. Equ., 95:183-202 (1992).
  • 10Hadeler, K.P., Muller, J. Vaccination in age-structured populations Ⅰ: The reproduction number, in Models for Infectious Human Diseases: Their Structured Relation to Data. V.Isham and G. Medley, eds.,Cambridge University Press. Cambridge, 90-101, 1993.

共引文献8

同被引文献19

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部