期刊文献+

非线性随机Pantograph微分方程及其θ-方法的均方渐近稳定性 被引量:1

Mean-Square Asymptotic Stability of θ-Methods for Nonlinear Stochastic Pantograph Differential Equations
下载PDF
导出
摘要 本文主要研究了非线性随机Pantograph微分方程,讨论了其零解的均方渐近稳定性并给出了零解均方渐近稳定的充分条件.在本文的第三部分,我们将随机θ-方法应用于这类问题,获得了数值解均方渐近稳定条件. This paper studies mean-square asymptotic stability of the zero solution of initial problems of a general class of stochastic pantograph differential equation. The sufficient conditions of mean-square asymptotic stability of the zero solution are derived. In the third section, numerical methods based on θ- methods are suggested and mean-square asymptotic stability conditions for the presented methods are derived.
出处 《应用数学》 CSCD 北大核心 2009年第1期199-203,共5页 Mathematica Applicata
基金 国家自然科学基金资助项目(10871078)
关键词 非线性随机 Pantograph微分方程 均方渐近稳定 Θ-方法 Nonlinear stochastic Pantograph differential equation Mean-square asymptotic stability θ- method
  • 相关文献

参考文献7

  • 1Cao W,Liu M,Fan Z. MS-stability of the Euler-Maruyama method for stochastic differential dalay equations[J]. Appl. Math. Comp. , 2004,159:127-135.
  • 2Liu M, Cao W,Fan Z. Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation[J]. J. Comp. Appl. Math. ,2004,170,255-268.
  • 3Baker C T H, Buckwar E. On Halanay-type analysis of exponential stability for the 0- Maruyama method for stochastic delay differential equations[J]. Stochastics and Dynamics,2005,5:201-209.
  • 4Baker C T H ,Buekwar E. Exponential stability in p-th mean of solutions, and of convergent Euler-type solutions,of stochastic delay differential equations[J]. Comput. Appl. Math. , 2005,184: 404-427.
  • 5Wang Z,Zhang C. An analysis of stability of Milstein method for stochastic differential equations with de- lay[J]. Computers and Mathematics with Applications, 2006,51 : 1445- 1452.
  • 6王志勇,张诚坚.随机延迟微分方程的Milstein方法的非线性均方稳定性[J].应用数学,2008,21(1):201-206. 被引量:10
  • 7范振成,刘明珠.线性随机比例方程的渐近均方稳定性(英文)[J].应用数学,2007,20(3):519-523. 被引量:3

二级参考文献15

  • 1Baker C T H,Buckwar E.Continuous θ-methods for the stochastic pantograph equation[J].Electron.Trans.Numer.Anal.,2000,11:131--151.
  • 2Higham D J.Mean-square and asymptotic stability of the stochastic theta method[J].SIAM J.Numer.Anal.,2000,38:753--769.
  • 3Kloeden P E,Platen E.Numerical Solution of Stochastic Differential Equations[M].Berlin:Springer,1992.
  • 4Liu M Z,Cao W R,Fan Z C.Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation[J].J.Comput.Appl.Math.,2004,170:255--268.
  • 5Mao X R,Sabanis S.Numerical solutions of stochastic differential delay equations under local Lipschitz condition[J].J.Comput.Appl.Math.,2003,151:215--227.
  • 6Saito Y,Mitsui T.Stability analysis of numerical schemes for stochastic differential equations[J].SIAM J.Numer.Anal.,1996,33:2254--2267.
  • 7Baker C T H,Buckwar E.Exponential stability in p-th mean of solutions,and of convergent Euler-type solutions,of stochastic delay differential equations[J].J.Comput.Appl.Math.,2005,184:404-427.
  • 8Cao W R,Liu M Z,Fan Z C.MS-stability of the Euler-Maruyama method for stochastic differential delay equations[J].Appl.Math.Comp.,2004,159:127-135.
  • 9Kloeden P E,Platen E.Numerical Solution of Stochastic Differential Equations[M].Belin:Springer-Verlag,1992.
  • 10Platen E.An introduction to numerical methods for stochastic differential equations[J].Acta Numer.,1999,8:197-246.

共引文献11

同被引文献2

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部