期刊文献+

一种基于ICA的脊波域数字水印算法 被引量:1

An ICA-Based Digital Watermarking Algorithm In the Ridgelet Transform Domain
下载PDF
导出
摘要 鲁棒性是数字水印的基本要求之一,水印嵌入的位置和强度直接影响到水印的鲁棒性。脊波变换是新型的多尺度分析方法。本文提出的脊波变换是图像在有限Radon变换(FRAT)的基础上进行二维小波变换,将Arnold置乱后的水印嵌入到图像的脊波系数中,利用独立成分分析(ICA)进行水印提取。实验结果表明,在强烈攻击的情况下,此方法具有良好的水印不可见性,对Gaussian、JPEG、Speckle攻击具有良好的鲁棒性。 Robustness is one of the most basic requirements for digital watermarks. The embedding position and embedding strength will affect the robustness of watermarks. Ridgelet Transform is a new multi-scale analysis. This paper presents the ridge of wavelet transform based on limited Radon transform images (FRAT), and a two-dimensional wavelet transform. Arnold Scrambling is adopted in the embedding of image ridgelet coefficients, and independent component analysis (ICA) is used for watermark extraction. The experimental results show that this method have good no-visibility of the watermarks, and is robust to the Gaussian, JPEG, Speckle attacks.
出处 《计算机工程与科学》 CSCD 北大核心 2009年第2期31-33,共3页 Computer Engineering & Science
关键词 置乱 小波 脊波 独立成分分析 数字水印 scrambling wavelet ridgelet independent component analysis digital watermarking
  • 相关文献

参考文献6

  • 1Candes E J ,Donoho D L. Ridgelets: A Key to Higher-Dimensionality Intermittency[J]. Philosophical Trans of the Royal Society London Series A, 1999,357 : 2495-2509.
  • 2Starck J-L, Candes E J, Donoho D L. The Curvelet Transform for Image Denosing[J]. IEEE Trans on Image Processing, 2002, 11 (6) : 670-684.
  • 3Donohu D L. Ridgelet Functions and Orthonormal Ridgelets [J]. Journal of Approximation Theory, 2001,111:143-179.
  • 4杨国梁,汪西莉,张莉.脊波变换及其在图像处理中的应用[J].计算机技术与发展,2006,16(5):39-41. 被引量:5
  • 5Do M N, Vetterli M. The Finite Ridgelet Transform for Image Representation[J]. IEEE Trans on Image Processing, 2002,12(1) : 16-28.
  • 6朱恒晔,李光耀,丁志强.基于ICA的小波域图像数字水印方法[J].微型电脑应用,2005,21(5):7-9. 被引量:2

二级参考文献12

  • 1Aapo Hyvarinen, Erkki Oja Independent Component Analysis[R]:A Tutorial Neural Networks, 1999.
  • 2Ella Bingham, Aapo hyvarinen A Fast Fixed-Point Algotithm for Independent Component Anallysis of Comples Valued Signals [J]. International Journal of Neural Systems, 2000,10(1)1-8.
  • 3Stephane Bounkong, Boremi Toch,David Saad, David Lowe ICA for Watermarking Digital Images[J]. Journal of Machine Learning Research, 2003,4(3): 1471 - 1498.
  • 4Candes E J, Donoho D L. Ridgelet : A Key to high - dimensional intermittency[J]. Phil Trans R Soc Lond A, 1999,357:2495 - 2509.
  • 5Starck J - L, Candes E J,Donoho D L. The Curvelet Transform for Image Denosing[J]. IEEE Transaction on Image Processing, 2002,11 (6) : 670 - 684.
  • 6Donoho D L. Ridgelet functions and Orthonormal Ridgelets[J]. Journal of Approximation Theory,2001,111:143 - 179.
  • 7Candes E J. Ridgdet: theory and application[M]. Stanford Stanford University:Department of Statistic, 1998.
  • 8Beylkon G. Discrete Radon Transform[J]. IEEE Trans ASSP,1987,35(1) :162 - 172.
  • 9Do M N,Vetterli M. The finite Ridgelet Transform for Image Representation[J]. IEEE Transaction on Image Processing,2002,12(1):16 -28.
  • 10Donoho D L, Johnstone I M. Ideal spatial adaptation Via wavelet shrinkage[J]. BIOMETRIKA, 1994,81:425 - 455.

共引文献5

同被引文献28

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部