期刊文献+

并行设计的高性能随机椭圆曲线加密协处理器

The Parallelized Design of an Elliptic Curve Cryptography Coprocessor for Random Curves
下载PDF
导出
摘要 为加速椭圆曲线加密的运算,本文提出了一种新的并行设计的椭圆曲线加密处理器结构。该处理器采用的模运算单元的特点是含有两个模乘、一个模加和一个模平方模块。两个模乘可以并行运算,而且在模乘运算的同时可并行完成模加或模平方的运算。Xilinx公司的VirtexE XCV2600 FPGA硬件实现结果表明,完成有限域GF(2163)上任意椭圆曲线上的一次标量乘的全部运算只需3064个时钟,时间消耗为31.17μs,资源消耗为3994个寄存器和15527个查找表,适合高性能椭圆曲线加密应用的要求。 In this paper, a parallel hardware processor to compute elliptic curve scalar multiplication is proposed. The processor is able to compute all the operations by using a modular arithmetic logic unit, and the modular arithmetic logic unit consists of two multiplications, one addition and one squaring. The two multiplications can operate in parallel. Multiplica- tion and addition or squaring can also compute in parallel. The implementation results based on Xilinx Virtex2 XC2V6000 FPGAs show that our proposed design is able to compute a scalar multiplication on the random GF(2^163) elliptic curve in 3 064 cycles. The total computation time is only 31.17μs, occupying 3 994 registers and 15 527 LUTs. It implies this processor is suitable for high-performance applications.
出处 《计算机工程与科学》 CSCD 北大核心 2009年第2期104-107,115,共5页 Computer Engineering & Science
基金 国家863计划资助项目(2006AA01Z226)
关键词 椭圆曲线 标量乘 硬件实现 并行设计 高性能 elliptic curve cryptography scalar multiplication hardware implementation parallel design high performance
  • 相关文献

参考文献7

  • 1IEEE P1363, IEEE Standard Specifications for Public-Key Cryptography[S]. 2000.
  • 2Dormale G M, Quisquater J-J. High-Speed Hardware Implementations of Elliptic Curve Cryptography: A Survey [J]. Journal of Systems Architecture, 2007,53 (2-3) : 72-84.
  • 3Rodriguez-Henriquez F, Saqib N A, DiawPerez A. A Fast Parallel Implementation of Elliptic CUrve Point Multiplication Over GF(2^m) [J]. Mieroproeessors and Mierosystems, 2004,28(5-6) :329-339.
  • 4Shu C, Gaj K, E1-Ghazawi T. Low Latency Elliptic Curve Cryptography Accelerators for NIST Curves on Binary Fields [C]//Proc of the IEEE Int'l Conf on Field-Programmable Technology, 2005 : 309-310.
  • 5L'opez J, Dahab R. Fast Multiplication on Elliptic Curves Over GF(2^m) Without Precomputation[C]//Proc of the 1st Int'l Workshop on Cryptographic Hardware and Embedded Systems, 1999 : 316-327.
  • 6Itoh T,Tsujii S. A Fast Algorithm for Computing Multiplicative Inverses in GF(2^m) Using Normal Bases[J]. Information and Computing, 1988,78(3) : 171-177.
  • 7Wu H. Bit-Parallel Finite Field Multiplier and Squarer Using Polynomial Basis [J]. IEEE Trans on Computers, 2002,51 (7) :750-758.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部