期刊文献+

基于空间邻域相关性的运动目标检测方法 被引量:17

Moving Object Detection Based on Spatial Local Correlation
下载PDF
导出
摘要 针对传统混合高斯模型运动目标检测准确度不高的问题,本文提出了一种改进的运动目标检测算法。该方法通过利用空间邻域的相关性信息,结合混合高斯模型来提高运动目标检测的准确性。首先,对图像中的每一像素建立高斯模型,并采用模型的匹配次数确定方差更新系数的算法,解决了传统方法中方差收敛缓慢的问题;然后重新定义了马尔科夫随机场的势能函数,并融入空间邻域的相关性信息,由此获得了用于运动目标检测的自适应阈值。采用IBM研究中心的测试视频序列对本文的方法进行了测试,实验结果表明,本文的方法对复杂的场景有较好的适应性,能够得到比较准确的检测结果。 The accuracy of moving object detection based on traditional Gaussian mixture model is not high. In order to solve this problem, an improved method for moving object detection was proposed, which could improve the accuracy of moving object detection by Gaussian mixture model with spatial local correlation. Firstly, the Gaussian mixture model was built for each pixel in image, and the algorithm of the updating the variance coefficients based on the number of model matching was used to solve the problem that the variance converged slowly in traditional method. Then, the energy function of the Markov random field was redefined and combined with the spatial local correlation, and an adaptive threshold was obtained for moving object detection. By using the public available test data set from IBM Research, the experiments were carried out. Test results illustrate that the proposed method can adapt to the dynamic scenes much better, and obtain more accurate results of moving object detection.
作者 印勇 王亚飞
出处 《光电工程》 CAS CSCD 北大核心 2009年第2期1-5,共5页 Opto-Electronic Engineering
关键词 运动目标检测 混合高斯模型 空间邻域相关性 马尔可夫随机场 moving object detection Gaussian mixture model spatial local correlation Markov random field
  • 相关文献

参考文献13

  • 1林洪文,涂丹,李国辉.基于统计背景模型的运动目标检测方法[J].计算机工程,2003,29(16):97-99. 被引量:80
  • 2于跃龙,卢焕章.基于背景构造的视频对象分割技术[J].计算机工程与科学,2006,28(1):36-38. 被引量:4
  • 3郭永涛,宋焕生,贺昱曜.视频交通监控系统中背景提取算法[J].电视技术,2006,30(5):91-93. 被引量:15
  • 4Ridder Christof, Olaf Munkelt, Harald Kirchner. Adaptive Background Estimation and Foreground Detection using Kalman-Filtering [C]// Proceedings of the International Conference on recent Advances in Meehatronies, Istanbul, Turkey, August 14-16, 1995. Istanbul, Turkey: UNESCO Chair on Mechatronics, 1995: 193-199.
  • 5Richard Wren Christopher, Azarbayejani All, Darrell Trevor, et al. Pfmder: Real-Time Tracking of the Human Body [J]. IEEE Transactions on Pattern, Analysis and Machine Intelligence, 1997, 19(7): 780-785.
  • 6Stauffer Chris, Grimson W E L. Adaptive background mixture models for real-time tracking [C]// Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Fort Collins, CO, USA, June 23-25, 1999. Washington DC: IEEE, 1999, 2: 245-252.
  • 7Elgammal Ahmed M, Harwood David, Davis Larry S. Non-parametric model for background subtraction [C]// Proceedings of the 6th European Conference on Computer Vision, Dublin, Ireland, June 26 -July 1, 2000. London, UK: Springer-Verlag, 2000: 751-767.
  • 8Rittscher J, Kato J, Joga S, et al. A probabilistic background model for tracking [C]// Proceedings of the 6th European Conference on Computer Vision, Dublin, ' Ireland, June 26 -July 1, 2000. London, UK: Springer-Verlag, 2000: 336-350.
  • 9Yang Sheng-Yan, Hsu Chiou-Ting. Background Modeling from GMM Likelihood Combined with Spatial and Color Coherency [C]//IEEE Internalional Conference on Image Processing, Atlanta, GA, Oct 8-11, 2006. Washington D C: IEEE, 2006: 2801-2804.
  • 10马义德,朱望飞,安世霞,邱会银,汤书森.改进的基于高斯混合模型的运动目标检测方法[J].计算机应用,2007,27(10):2544-2546. 被引量:39

二级参考文献38

  • 1刘洁,张东来.关于自适应高斯混合背景模型的更新算法的研究[J].微计算机信息,2006(08S):241-242. 被引量:23
  • 2代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 3Collins R, Lipton A,Kanade T,et al. A System for Video Surveillance and Monitoring.Tech. Report CM U-RI-TR-00-12,Robotics Institute,Carnegie Mellon University,2000-05.
  • 4Koller D, Daniilidis K,Nagel H.Model-bascd Object Tracking in Monocular Image Sequences of Road traffic Scenes.International Journal of Computer Vision, 1993,10(3).
  • 5Wren C R,Azarbayejani A,Darrell T.Plinder:Real_time Tracking of the Human Body.IEEE Transactions on Pattern Analysis and Machine Intelligence, 1977-07,7.
  • 6Haritaoglu I,Davis L S,Harwood D.W4 Who? When? Where? What? A Rreal Time System for Detecing and Tracking People.In FGR98,1998.
  • 7Mclvor M.Background Subtraction Techniques.IVCNZ00, Hamilton,New Zealand, 2000-11.
  • 8Toyama K,Krumm J.Brumitt B.et al.Wallowver; Principles and Practice of Background Maintenance.ln International Conference on Computer Vision (1999).
  • 9Marcenaro L.Gera G.Rcgazzoni C.Adaptive Change Dctection APProach for Objcet Detection in Outdoor Scenes Under Variable Speed IIIumination Changes.European Signal Processing Conference Eusipco 2000,Tamperc.Finland.
  • 10Cucchiara R,Grana C.Piceardi M.Improving Shadow Suppression in Moving Objcet Detection with HSV Color Information.Proc.of ITSC,2001.

共引文献132

同被引文献99

引证文献17

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部